require("aystar.nut"); /** * A Road Pathfinder. * This road pathfinder tries to find a buildable / existing route for * road vehicles. You can changes the costs below using for example * roadpf.cost.turn = 30. Note that it's not allowed to change the cost * between consecutive calls to FindPath. You can change the cost before * the first call to FindPath and after FindPath has returned an actual * route. To use only existing roads, set cost.no_existing_road to * cost.max_cost. */ class Road { _aystar_class = AyStar; _max_cost = null; ///< The maximum cost for a route. _cost_tile = null; ///< The cost for a single road tile, bridge tile or tunnel tile. _cost_no_existing_road = null; ///< The cost that is added to _cost_tile if no road connection exists between two tiles. Cost is doubled when the tile to enter has no road, no bridge and no tunnel. _cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes. _cost_slope = null; ///< The extra cost if a road tile or bridge head is sloped. _cost_bridge_per_tile = null; ///< The extra cost per tile for a bridge. _cost_tunnel_per_tile = null; ///< The extra cost per tile for a tunnel. _cost_coast = null; ///< The extra cost if a new road tile or new bridge head is on a coast tile with water. _cost_drive_through = null; ///< The extra cost if a road tile is part of a drive through road station. _max_bridge_length = null; ///< The maximum length of a bridge that will be built. Length includes bridge heads. _max_tunnel_length = null; ///< The maximum length of a tunnel that will be built. Length includes entrance and exit. _pathfinder = null; ///< A reference to the used AyStar object. cost = null; ///< Used to change the costs. _running = null; _map_size_x = AIMap.GetMapSizeX(); constructor() { this._max_cost = 10000000; this._cost_tile = 100; this._cost_no_existing_road = 40; this._cost_turn = 100; this._cost_slope = 200; this._cost_bridge_per_tile = 150; this._cost_tunnel_per_tile = 120; this._cost_coast = 20; this._cost_drive_through = 800; this._max_bridge_length = 10; this._max_tunnel_length = 20; this._pathfinder = this._aystar_class(this, this._Cost, this._Estimate, this._Neighbours, this._CheckDirection); this.cost = this.Cost(this); this._running = false; } /** * Initialize a path search between sources and goals. * @param sources The source tiles. * @param goals The target tiles. * @see AyStar::InitializePath() */ function InitializePath(sources, goals) { local nsources = []; foreach (node in sources) { nsources.push([node, 0xFF]); } this._pathfinder.InitializePath(nsources, goals); } /** * Try to find the path as indicated with InitializePath with the lowest cost. * @param iterations After how many iterations it should abort for a moment. * This value should either be -1 for infinite, or > 0. Any other value * aborts immediatly and will never find a path. * @return A route if one was found, or false if the amount of iterations was * reached, or null if no path was found. * You can call this function over and over as long as it returns false, * which is an indication it is not yet done looking for a route. * @see AyStar::FindPath() */ function FindPath(iterations); }; class Road.Cost { _main = null; function _set(idx, val) { if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder."); switch (idx) { case "max_cost": this._main._max_cost = val; break; case "tile": this._main._cost_tile = val; break; case "no_existing_road": this._main._cost_no_existing_road = val; break; case "turn": this._main._cost_turn = val; break; case "slope": this._main._cost_slope = val; break; case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break; case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break; case "coast": this._main._cost_coast = val; break; case "drive_through": this._main._cost_drive_through = val; break; case "max_bridge_length": this._main._max_bridge_length = val; break; case "max_tunnel_length": this._main._max_tunnel_length = val; break; default: throw("the index '" + idx + "' does not exist"); } return val; } function _get(idx) { switch (idx) { case "max_cost": return this._main._max_cost; case "tile": return this._main._cost_tile; case "no_existing_road": return this._main._cost_no_existing_road; case "turn": return this._main._cost_turn; case "slope": return this._main._cost_slope; case "bridge_per_tile": return this._main._cost_bridge_per_tile; case "tunnel_per_tile": return this._main._cost_tunnel_per_tile; case "coast": return this._main._cost_coast; case "drive_through": return this._main._cost_drive_through; case "max_bridge_length": return this._main._max_bridge_length; case "max_tunnel_length": return this._main._max_tunnel_length; default: throw("the index '" + idx + "' does not exist"); } } constructor(main) { this._main = main; } }; function Road::FindPath(iterations) { local test_mode = AITestMode(); local ret = this._pathfinder.FindPath(iterations); this._running = (ret == false) ? true : false; return ret; } function Road::_GetBridgeNumSlopesEfficient(end_a, end_b, map_size_x = Road._map_size_x, _AITile = AITile) { // AILog.Info("_GetBridgeNumSlopesEfficient in"); // local before = AIController.GetOpsTillSuspend(); local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = _AITile.GetSlope(end_a); if (!((slope == _AITile.SLOPE_NE && direction == 1) || (slope == _AITile.SLOPE_SE && direction == -map_size_x) || (slope == _AITile.SLOPE_SW && direction == -1) || (slope == _AITile.SLOPE_NW && direction == map_size_x) || slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_E || slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_W)) { slopes++; } slope = _AITile.GetSlope(end_b); direction = -direction; if (!((slope == _AITile.SLOPE_NE && direction == 1) || (slope == _AITile.SLOPE_SE && direction == -map_size_x) || (slope == _AITile.SLOPE_SW && direction == -1) || (slope == _AITile.SLOPE_NW && direction == map_size_x) || slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_E || slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_W)) { slopes++; } // AILog.Info("Measured ops _GetBridgeNumSlopesEfficient: " + (before - AIController.GetOpsTillSuspend()) + " ; end_a = " + end_a + " ; end_b = " + end_b); // AILog.Info("_GetBridgeNumSlopesEfficient out"); return slopes; } function Road::_GetBridgeNumSlopes(end_a, end_b) { // AILog.Info("_GetBridgeNumSlopes in"); // local before = AIController.GetOpsTillSuspend(); local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = AITile.GetSlope(end_a); if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } local slope = AITile.GetSlope(end_b); direction = -direction; if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } // AILog.Info("Measured ops _GetBridgeNumSlopes: " + (before - AIController.GetOpsTillSuspend()) + " ; end_a = " + end_a + " ; end_b = " + end_b); // AILog.Info("_GetBridgeNumSlopes out"); return slopes; } function Road::_CostHelperEfficient(self, path, new_tile, coast_cost_only = null, _AIBridge = AIBridge, _AITunnel = AITunnel, _AIRoad = AIRoad, _AITile = AITile, _AICompany = AICompany) { // AILog.Info("_CostHelperEfficient in"); // local before = AIController.GetOpsTillSuspend(); local prev_tile = path.GetTile(); local cost = 0; if (coast_cost_only != true) { cost += self._cost_tile; local dist = 0; local par_tile = 0; if (path.GetParent() != null) { dist = AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile); par_tile = path.GetParent().GetTile(); } if (dist == 1) { /* Check for a turn. We do this by substracting the TileID of the current node from * the TileID of the previous node and comparing that to the difference between the * previous node and the node before that. */ if (prev_tile - par_tile != new_tile - prev_tile) { cost += self._cost_turn; } /* Check if the last tile was sloped. */ if (!_AIBridge.IsBridgeTile(prev_tile) && !_AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRoadEfficient(par_tile, prev_tile, new_tile)) { cost += self._cost_slope; } } if (!_AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { cost += self._cost_no_existing_road * 2; if (_AIRoad.IsRoadTile(new_tile) || _AIBridge.IsBridgeTile(new_tile) || _AITunnel.IsTunnelTile(new_tile) || (_AIRoad.IsRoadStationTile(new_tile) || _AIRoad.IsRoadDepotTile(new_tile)) && _AITile.GetOwner(new_tile) == _AICompany.ResolveCompanyID(_AICompany.COMPANY_SELF)) { cost -= self._cost_no_existing_road; } } if (_AIRoad.IsDriveThroughRoadStationTile(new_tile)) { cost += self._cost_drive_through; } } if (coast_cost_only != null) { /* Check if the new tile is a coast tile with water. */ if (_AITile.IsCoastTile(new_tile) && _AITile.HasTransportType(new_tile, AITile.TRANSPORT_WATER)) { cost += self._cost_coast; } } // AILog.Info("Measured ops _CostHelperEfficient: " + (before - AIController.GetOpsTillSuspend()) + " ; coast_cost_only = " + (coast_cost_only == null ? "null" : coast_cost_only) + " ; par_tile = " + (path.GetParent() != null ? path.GetParent().GetTile() : "null") + " ; prev_tile = " + prev_tile + " ; new_tile = " + new_tile); // AILog.Info("_CostHelperEfficient out"); return cost; } function Road::_CostHelper(self, path, new_tile, coast_cost_only = null) { // AILog.Info("_CostHelper in"); // local before = AIController.GetOpsTillSuspend(); local prev_tile = path.GetTile(); local cost = 0; if (coast_cost_only != true) { cost += self._cost_tile; local dist = 0; local par_tile = 0; if (path.GetParent() != null) { dist = AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile); par_tile = path.GetParent().GetTile(); } if (dist == 1) { /* Check for a turn. We do this by substracting the TileID of the current node from * the TileID of the previous node and comparing that to the difference between the * previous node and the node before that. */ if ((prev_tile - par_tile) != (new_tile - prev_tile)) { cost += self._cost_turn; } /* Check if the last tile was sloped. */ if (!AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRoad(par_tile, prev_tile, new_tile)) { cost += self._cost_slope; } } if (!AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { cost += self._cost_no_existing_road * 2; if (AIRoad.IsRoadTile(new_tile) || AIBridge.IsBridgeTile(new_tile) || AITunnel.IsTunnelTile(new_tile) || (AIRoad.IsRoadStationTile(new_tile) || AIRoad.IsRoadDepotTile(new_tile)) && AITile.GetOwner(new_tile) == AICompany.ResolveCompanyID(AICompany.COMPANY_SELF)) { cost -= self._cost_no_existing_road; } } if (AIRoad.IsDriveThroughRoadStationTile(new_tile)) { cost += self._cost_drive_through; } } if (coast_cost_only != null) { /* Check if the new tile is a coast tile with water. */ if (AITile.IsCoastTile(new_tile) && AITile.HasTransportType(new_tile, AITile.TRANSPORT_WATER)) { cost += self._cost_coast; } } // AILog.Info("Measured ops _CostHelper: " + (before - AIController.GetOpsTillSuspend()) + " ; coast_cost_only = " + (coast_cost_only == null ? "null" : coast_cost_only) + " ; par_tile = " + (path.GetParent() != null ? path.GetParent().GetTile() : "null") + " ; prev_tile = " + prev_tile + " ; new_tile = " + new_tile); // AILog.Info("_CostHelper out"); return cost; } function Road::_Cost(self, path, new_tile, new_direction, _AIBridge = AIBridge, _AITunnel = AITunnel) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); local dist = AIMap.DistanceManhattan(new_tile, prev_tile); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (_AIBridge.IsBridgeTile(new_tile)) { if (_AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelperEfficient(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * self._cost_tile + self._GetBridgeNumSlopesEfficient(new_tile, prev_tile) * self._cost_slope; } if (_AITunnel.IsTunnelTile(new_tile)) { if (_AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelperEfficient(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * self._cost_tile; } /* If the two tiles are more than 1 tile apart, the pathfinder wants a bridge or tunnel * to be built. It isn't an existing bridge / tunnel, as that case is already handled. */ if (dist > 1) { /* Check if we should build a bridge or a tunnel. */ if (_AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2); } else { return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2) + self._GetBridgeNumSlopesEfficient(new_tile, prev_tile) * self._cost_slope + self._CostHelperEfficient(self, path, new_tile, true); } } return path.GetCost() + self._CostHelperEfficient(self, path, new_tile, false); } function Road::_CostOriginal(self, path, new_tile, new_direction) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); local dist = AIMap.DistanceManhattan(new_tile, prev_tile); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (AIBridge.IsBridgeTile(new_tile)) { if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelper(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } if (AITunnel.IsTunnelTile(new_tile)) { if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelper(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * self._cost_tile; } /* If the two tiles are more than 1 tile apart, the pathfinder wants a bridge or tunnel * to be built. It isn't an existing bridge / tunnel, as that case is already handled. */ if (dist > 1) { /* Check if we should build a bridge or a tunnel. */ if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2); } else { return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope + self._CostHelper(self, path, new_tile, true); } } return path.GetCost() + self._CostHelper(self, path, new_tile, false); } function Road::_Estimate(self, cur_tile, cur_direction, goal_tiles, _AIMap = AIMap) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { min_cost = min(_AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); } return min_cost; } function Road::_EstimateOriginal(self, cur_tile, cur_direction, goal_tiles) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { min_cost = min(AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); } return min_cost; } function Road::_Neighbours(self, path, cur_node, _AIBridge = AIBridge, _AITunnel = AITunnel, _AITile = AITile, _AIMap = AIMap, _AIRoad = AIRoad, _AIRail = AIRail, _AICompany = AICompany, _AIVehicle = AIVehicle) { /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; // AILog.Info("_Neighbours (efficient) in"); // local before = AIController.GetOpsTillSuspend(); local par = path.GetParent() != null; local last_node = par ? path.GetParent().GetTile() : 0; local tiles = []; /* Check if the current tile is part of a bridge or tunnel. */ local other_end = 0; if (_AIBridge.IsBridgeTile(cur_node)) { other_end = _AIBridge.GetOtherBridgeEnd(cur_node); } else if (_AITunnel.IsTunnelTile(cur_node)) { other_end = _AITunnel.GetOtherTunnelEnd(cur_node); } if (other_end && _AITile.HasTransportType(cur_node, _AITile.TRANSPORT_ROAD)) { // local other_end = _AIBridge.IsBridgeTile(cur_node) ? _AIBridge.GetOtherBridgeEnd(cur_node) : _AITunnel.GetOtherTunnelEnd(cur_node); local next_tile = cur_node + (cur_node - other_end) / _AIMap.DistanceManhattan(cur_node, other_end); if ((_AIRoad.AreRoadTilesConnected(cur_node, next_tile) || _AIRoad.IsRoadTile(next_tile)) && !_AIRail.IsLevelCrossingTile(next_tile) && (!_AIRoad.IsDriveThroughRoadStationTile(next_tile) || _AIRoad.GetRoadStationFrontTile(next_tile) == cur_node || _AIRoad.GetDriveThroughBackTile(next_tile) == cur_node) || _AITile.IsBuildable(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } /* The other end of the bridge / tunnel is a neighbour. */ tiles.push([other_end, self._GetDirectionEfficient(next_tile, cur_node, true) << 4]); } else if (last_node && _AIMap.DistanceManhattan(cur_node, last_node) > 1) { local next_tile = cur_node + (cur_node - last_node) / _AIMap.DistanceManhattan(cur_node, last_node); if (_AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !_AIRail.IsLevelCrossingTile(next_tile) || _AIRoad.BuildRoad(cur_node, next_tile) && !_AIRail.IsRailTile(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } } else { local offsets = [_AIMap.GetTileIndex(0, 1), _AIMap.GetTileIndex(0, -1), _AIMap.GetTileIndex(1, 0), _AIMap.GetTileIndex(-1, 0)]; /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* We add them to the to the neighbours-list if one of the following applies: * 1) There already is a connection between the current tile and the next tile, and it's not a level crossing. * 2) We can build a road to the next tile, except when it's a level crossing. * We can connect to a regular road station or a road depot owned by us. * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ if (_AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !_AIRail.IsLevelCrossingTile(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } else if ((_AITile.IsBuildable(next_tile) || _AIRoad.IsRoadTile(next_tile) && !_AIRail.IsLevelCrossingTile(next_tile) || (_AIRoad.IsRoadStationTile(next_tile) || _AIRoad.IsRoadDepotTile(next_tile)) && _AITile.GetOwner(next_tile) == _AICompany.ResolveCompanyID(_AICompany.COMPANY_SELF)) && (!par || _AIRoad.CanBuildConnectedRoadPartsHere(cur_node, last_node, next_tile)) && _AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } else if (self._CheckTunnelBridgeEfficient(cur_node, next_tile) && (!par || _AIRoad.CanBuildConnectedRoadPartsHere(cur_node, last_node, next_tile)) && _AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } } if (par) { // local bridges = self._GetTunnelsBridgesEfficient(path.GetParent().GetTile(), cur_node, self._GetDirectionEfficient(path.GetParent().GetTile(), cur_node, true) << 4); // foreach (tile in bridges) { // tiles.push(tile); // } /* * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ local bridge_dir = self._GetDirectionEfficient(last_node, cur_node, true) << 4; for (local i = 2; i < self._max_bridge_length;) { local target = cur_node + i * (cur_node - last_node); local bridge_list = AIBridgeList_Length(++i); if (!bridge_list.IsEmpty() && _AIBridge.BuildBridge(_AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = _AITile.GetSlope(cur_node); if (slope == _AITile.SLOPE_SW || slope == _AITile.SLOPE_NW || slope == _AITile.SLOPE_SE || slope == _AITile.SLOPE_NE) { local other_tunnel_end = _AITunnel.GetOtherTunnelEnd(cur_node); if (_AIMap.IsValidTile(other_tunnel_end)) { local tunnel_length = _AIMap.DistanceManhattan(cur_node, other_tunnel_end); if (_AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && cur_node + (cur_node - other_tunnel_end) / tunnel_length == last_node && tunnel_length < self._max_tunnel_length && _AITunnel.BuildTunnel(_AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } } } } } // AILog.Info("Measured ops _Neighbours (efficient): " + (before - AIController.GetOpsTillSuspend()) + " ; cur_node = " + cur_node); // AILog.Info("_Neighbours (efficient) out"); return tiles; } function Road::_NeighboursOriginal(self, path, cur_node) { /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; // AILog.Info("_Neighbours in"); // local before = AIController.GetOpsTillSuspend(); local tiles = []; /* Check if the current tile is part of a bridge or tunnel. */ if ((AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) && AITile.HasTransportType(cur_node, AITile.TRANSPORT_ROAD)) { local other_end = AIBridge.IsBridgeTile(cur_node) ? AIBridge.GetOtherBridgeEnd(cur_node) : AITunnel.GetOtherTunnelEnd(cur_node); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if ((AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AIRoad.IsRoadTile(next_tile)) && !AIRail.IsLevelCrossingTile(next_tile) && (!AIRoad.IsDriveThroughRoadStationTile(next_tile) || AIRoad.GetRoadStationFrontTile(next_tile) == cur_node || AIRoad.GetDriveThroughBackTile(next_tile) == cur_node) || AITile.IsBuildable(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } /* The other end of the bridge / tunnel is a neighbour. */ tiles.push([other_end, self._GetDirection(next_tile, cur_node, true) << 4]); } else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) { local other_end = path.GetParent().GetTile(); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !AIRail.IsLevelCrossingTile(next_tile) || AIRoad.BuildRoad(cur_node, next_tile) && !AIRail.IsRailTile(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } else { local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1), AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)]; /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* We add them to the to the neighbours-list if one of the following applies: * 1) There already is a connection between the current tile and the next tile, and it's not a level crossing. * 2) We can build a road to the next tile, except when it's a level crossing. * We can connect to a regular road station or a road depot owned by us. * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !AIRail.IsLevelCrossingTile(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if ((AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile) && !AIRail.IsLevelCrossingTile(next_tile) || (AIRoad.IsRoadStationTile(next_tile) || AIRoad.IsRoadDepotTile(next_tile)) && AITile.GetOwner(next_tile) == AICompany.ResolveCompanyID(AICompany.COMPANY_SELF)) && (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if (self._CheckTunnelBridge(cur_node, next_tile) && (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } if (path.GetParent() != null) { local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetTile(), cur_node, true) << 4); foreach (tile in bridges) { tiles.push(tile); } } } // AILog.Info("Measured ops _Neighbours: " + (before - AIController.GetOpsTillSuspend()) + " ; cur_node = " + cur_node); // AILog.Info("_Neighbours out"); // local tiles2 = self._NeighboursEfficient(self, path, cur_node); // assert(tiles.len() == tiles2.len()); return tiles; } function Road::_CheckDirection(self, tile, existing_direction, new_direction) { return false; } function Road::_GetDirectionEfficient(from, to, is_bridge, map_size_x = Road._map_size_x, _AITile = AITile) { if (!is_bridge && _AITile.GetSlope(to) == _AITile.SLOPE_FLAT) return 0xFF; local difference = from - to; if (difference == 1) return 1; if (difference == -1) return 2; if (difference == map_size_x) return 4; if (difference == -map_size_x) return 8; } function Road::_GetDirection(from, to, is_bridge) { if (!is_bridge && AITile.GetSlope(to) == AITile.SLOPE_FLAT) return 0xFF; if (from - to == 1) return 1; if (from - to == -1) return 2; if (from - to == AIMap.GetMapSizeX()) return 4; if (from - to == -AIMap.GetMapSizeX()) return 8; } /** * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ function Road::_GetTunnelsBridgesEfficient(last_node, cur_node, bridge_dir, _AIBridge = AIBridge, _AITile = AITile, _AIMap = AIMap, _AITunnel = AITunnel, _AIVehicle = AIVehicle) { local tiles = []; for (local i = 2; i < this._max_bridge_length;) { local target = cur_node + i * (cur_node - last_node); local bridge_list = AIBridgeList_Length(++i); if (!bridge_list.IsEmpty() && _AIBridge.BuildBridge(_AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = _AITile.GetSlope(cur_node); if (slope != _AITile.SLOPE_SW && slope != _AITile.SLOPE_NW && slope != _AITile.SLOPE_SE && slope != _AITile.SLOPE_NE) return tiles; local other_tunnel_end = _AITunnel.GetOtherTunnelEnd(cur_node); if (!_AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = _AIMap.DistanceManhattan(cur_node, other_tunnel_end); if (_AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && cur_node + (cur_node - other_tunnel_end) / tunnel_length == last_node && tunnel_length < _max_tunnel_length && _AITunnel.BuildTunnel(_AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } /** * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ function Road::_GetTunnelsBridges(last_node, cur_node, bridge_dir) { local tiles = []; for (local i = 2; i < this._max_bridge_length; i++) { local bridge_list = AIBridgeList_Length(i + 1); local target = cur_node + i * (cur_node - last_node); if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = AITile.GetSlope(cur_node); if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles; local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node); if (!AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end); local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length; if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } function Road::_IsSlopedRoadEfficient(start, middle, end, map_size_x = Road._map_size_x, _AITile = AITile) { local NW = middle - map_size_x; local NE = middle - 1; local SE = middle + map_size_x; local SW = middle + 1; NW = NW == start || NW == end; //Set to true if we want to build a road to / from the north-west NE = NE == start || NE == end; //Set to true if we want to build a road to / from the north-east SE = SE == start || SE == end; //Set to true if we want to build a road to / from the south-west SW = SW == start || SW == end; //Set to true if we want to build a road to / from the south-east /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = _AITile.GetSlope(middle); /* A road on a steep slope is always sloped. */ if (_AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the road is sloped. */ if (slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_W) return true; if (slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_E) return true; if (NW && (slope == _AITile.SLOPE_NW || slope == _AITile.SLOPE_SE)) return true; if (NE && (slope == _AITile.SLOPE_NE || slope == _AITile.SLOPE_SW)) return true; return false; } function Road::_IsSlopedRoad(start, middle, end) { local NW = 0; //Set to true if we want to build a road to / from the north-west local NE = 0; //Set to true if we want to build a road to / from the north-east local SW = 0; //Set to true if we want to build a road to / from the south-west local SE = 0; //Set to true if we want to build a road to / from the south-east if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1; if (middle - 1 == start || middle - 1 == end) NE = 1; if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1; if (middle + 1 == start || middle + 1 == end) SW = 1; /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = AITile.GetSlope(middle); /* A road on a steep slope is always sloped. */ if (AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the road is sloped. */ if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true; if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true; if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true; if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true; return false; } function Road::_CheckTunnelBridgeEfficient(current_tile, new_tile, map_size_x = Road._map_size_x, _AIBridge = AIBridge, _AITunnel = AITunnel) { local dir2; if (_AIBridge.IsBridgeTile(new_tile)) { dir2 = _AIBridge.GetOtherBridgeEnd(new_tile) - new_tile; } else if (_AITunnel.IsTunnelTile(new_tile)) { dir2 = _AITunnel.GetOtherTunnelEnd(new_tile) - new_tile; } else { return false; } local dir = new_tile - current_tile; if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; dir = abs(dir); dir2 = abs(dir2); if ((dir >= map_size_x && dir2 < map_size_x) || (dir < map_size_x && dir2 >= map_size_x)) return false; return true; } function Road::_CheckTunnelBridge(current_tile, new_tile) { if (!AIBridge.IsBridgeTile(new_tile) && !AITunnel.IsTunnelTile(new_tile)) return false; local dir = new_tile - current_tile; local other_end = AIBridge.IsBridgeTile(new_tile) ? AIBridge.GetOtherBridgeEnd(new_tile) : AITunnel.GetOtherTunnelEnd(new_tile); local dir2 = other_end - new_tile; if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; dir = abs(dir); dir2 = abs(dir2); if ((dir >= AIMap.GetMapSizeX() && dir2 < AIMap.GetMapSizeX()) || (dir < AIMap.GetMapSizeX() && dir2 >= AIMap.GetMapSizeX())) return false; return true; }