//
// qsort.cpp
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// Defines qsort(), a routine for sorting arrays.
//
#include <corecrt_internal.h>
#include <search.h>
// Always compile this module for speed, not size
#pragma optimize("t", on)
#ifdef _M_CEE
#define __fileDECL __clrcall
#else
#define __fileDECL __cdecl
#endif
#ifdef __USE_CONTEXT
#define __COMPARE(context, p1, p2) comp(context, p1, p2)
#define __SHORTSORT(lo, hi, width, comp, context) shortsort_s(lo, hi, width, comp, context);
#else
#define __COMPARE(context, p1, p2) comp(p1, p2)
#define __SHORTSORT(lo, hi, width, comp, context) shortsort(lo, hi, width, comp);
#endif
// Swaps the objects of size 'width' that are pointed to by 'a' and 'b'
#ifndef _QSORT_SWAP_DEFINED
#define _QSORT_SWAP_DEFINED
_CRT_SECURITYSAFECRITICAL_ATTRIBUTE
static void __fileDECL swap(_Inout_updates_(width) char* a, _Inout_updates_(width) char* b, size_t width)
{
if (a != b)
{
// Do the swap one character at a time to avoid potential alignment
// problems:
while (width--)
{
char const tmp = *a;
*a++ = *b;
*b++ = tmp;
}
}
}
#endif // _QSORT_SWAP_DEFINED
// An insertion sort for sorting short arrays. Sorts the sub-array of elements
// between lo and hi (inclusive). Assumes lo < hi. lo and hi are pointers to
// the first and last elements in the range to be sorted (note: hi does not
// point one-past-the-end). The comp is a comparer with the same behavior as
// specified for qsort.
_CRT_SECURITYSAFECRITICAL_ATTRIBUTE
#ifdef __USE_CONTEXT
static void __fileDECL shortsort_s(
_Inout_updates_(hi - lo + 1) char* lo,
_Inout_updates_(width) char* hi,
size_t const width,
int (__fileDECL* comp)(void*, void const*, void const*),
void* const context
)
#else // __USE_CONTEXT
static void __fileDECL shortsort(
_Inout_updates_(hi - lo + 1) char* lo,
_Inout_updates_(width) char* hi,
size_t const width,
int (__fileDECL* comp)(void const*, void const*)
)
#endif // __USE_CONTEXT
{
// Note: in assertions below, i and j are alway inside original bound of
// array to sort.
// Reentrancy diligence: Save (and unset) global-state mode to the stack before making callout to 'compare'
__crt_state_management::scoped_global_state_reset saved_state;
while (hi > lo)
{
// A[i] <= A[j] for i <= j, j > hi
char* max = lo;
for (char* p = lo+width; p <= hi; p += width)
{
// A[i] <= A[max] for lo <= i < p
if (__COMPARE(context, p, max) > 0)
{
max = p;
}
// A[i] <= A[max] for lo <= i <= p
}
// A[i] <= A[max] for lo <= i <= hi
swap(max, hi, width);
// A[i] <= A[hi] for i <= hi, so A[i] <= A[j] for i <= j, j >= hi
hi -= width;
// A[i] <= A[j] for i <= j, j > hi, loop top condition established
}
// A[i] <= A[j] for i <= j, j > lo, which implies A[i] <= A[j] for i < j,
// so array is sorted
}
// This macro defines the cutoff between using QuickSort and insertion sort for
// arrays; arrays with lengths shorter or equal to the below value use insertion
// sort.
#define CUTOFF 8 // Testing shows that this is a good value.
// Note: The theoretical number of stack entries required is no more than 1 +
// log2(num). But we switch to insertion sort for CUTOFF elements or less, so
// we really only need 1 + log2(num) - log(CUTOFF) stack entries. For a CUTOFF
// of 8, that means we need no more than 30 stack entries for 32-bit platforms
// and 62 for 64-bit platforms.
#define STKSIZ (8 * sizeof(void*) - 2)
// QuickSort function for sorting arrays. The array is sorted in place.
// Parameters:
// * base: Pointer to the initial element of the array
// * num: Number of elements in the array
// * width: Width of each element in the array, in bytes
// * comp: Pointer to a function returning analog of strcmp for strings, but
// supplied by the caller for comparing the array elements. It
// accepts two pointers to elements; returns negative if 1 < 2;
// zero if 1 == 2, and positive if 1 > 2.
#ifndef _M_CEE
extern "C"
#endif
_CRT_SECURITYSAFECRITICAL_ATTRIBUTE
#ifdef __USE_CONTEXT
void __fileDECL qsort_s(
void* const base,
size_t const num,
size_t const width,
int (__fileDECL* const comp)(void*, void const*, void const*),
void* const context
)
#else // __USE_CONTEXT
void __fileDECL qsort(
void* const base,
size_t const num,
size_t const width,
int (__fileDECL* const comp)(void const*, void const*)
)
#endif // __USE_CONTEXT
{
_VALIDATE_RETURN_VOID(base != nullptr || num == 0, EINVAL);
_VALIDATE_RETURN_VOID(width > 0, EINVAL);
_VALIDATE_RETURN_VOID(comp != nullptr, EINVAL);
// A stack for saving the sub-arrays yet to be processed:
char* lostk[STKSIZ];
char* histk[STKSIZ];
int stkptr = 0;
if (num < 2)
return; // Nothing to do:
// The ends of the sub-array currently being sorted (note that 'hi' points
// to the last element, not one-past-the-end):
char* lo = static_cast<char*>(base);
char* hi = static_cast<char*>(base) + width * (num-1);
// This entry point is for pseudo-recursion calling: setting
// lo and hi and jumping to here is like recursion, but stkptr is
// preserved, locals aren't, so we preserve stuff on the stack.
recurse:
// The number of elements in the sub-array currently being sorted:
size_t const size = (hi - lo) / width + 1;
// Below a certain size, it is faster to use a O(n^2) sorting method:
if (size <= CUTOFF)
{
__SHORTSORT(lo, hi, width, comp, context);
}
else
{
// First we pick a partitioning element. The efficiency of the
// algorithm demands that we find one that is approximately the median
// of the values, but also that we select one fast. We choose the
// median of the first, middle, and last elements, to avoid bad
// performance in the face of already sorted data, or data that is made
// up of multiple sorted runs appended together. Testing shows that a
// median-of-three algorithm provides better performance than simply
// picking the middle element for the latter case.
// Find the middle element:
char* mid = lo + (size / 2) * width;
// Sort the first, middle, last elements into order:
if (__COMPARE(context, lo, mid) > 0)
swap(lo, mid, width);
if (__COMPARE(context, lo, hi) > 0)
swap(lo, hi, width);
if (__COMPARE(context, mid, hi) > 0)
swap(mid, hi, width);
// We now wish to partition the array into three pieces, one consisting
// of elements <= partition element, one of elements equal to the
// partition element, and one of elements > than it. This is done
// below; comments indicate conditions established at every step.
char* loguy = lo;
char* higuy = hi;
// Note that higuy decreases and loguy increases on every iteration,
// so loop must terminate.
for (;;)
{
// lo <= loguy < hi, lo < higuy <= hi,
// A[i] <= A[mid] for lo <= i <= loguy,
// A[i] > A[mid] for higuy <= i < hi,
// A[hi] >= A[mid]
// The doubled loop is to avoid calling comp(mid,mid), since some
// existing comparison funcs don't work when passed the same
// value for both pointers.
if (mid > loguy)
{
do
{
loguy += width;
}
while (loguy < mid && __COMPARE(context, loguy, mid) <= 0);
}
if (mid <= loguy)
{
do
{
loguy += width;
}
while (loguy <= hi && __COMPARE(context, loguy, mid) <= 0);
}
// lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
// either loguy > hi or A[loguy] > A[mid]
do
{
higuy -= width;
}
while (higuy > mid && __COMPARE(context, higuy, mid) > 0);
// lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
// either higuy == lo or A[higuy] <= A[mid]
if (higuy < loguy)
break;
// if loguy > hi or higuy == lo, then we would have exited, so
// A[loguy] > A[mid], A[higuy] <= A[mid],
// loguy <= hi, higuy > lo
swap(loguy, higuy, width);
// If the partition element was moved, follow it. Only need
// to check for mid == higuy, since before the swap,
// A[loguy] > A[mid] implies loguy != mid.
if (mid == higuy)
mid = loguy;
// A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
// of loop is re-established
}
// A[i] <= A[mid] for lo <= i < loguy,
// A[i] > A[mid] for higuy < i < hi,
// A[hi] >= A[mid]
// higuy < loguy
// implying:
// higuy == loguy-1
// or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid]
// Find adjacent elements equal to the partition element. The
// doubled loop is to avoid calling comp(mid,mid), since some
// existing comparison funcs don't work when passed the same value
// for both pointers.
higuy += width;
if (mid < higuy)
{
do
{
higuy -= width;
}
while (higuy > mid && __COMPARE(context, higuy, mid) == 0);
}
if (mid >= higuy)
{
do
{
higuy -= width;
}
while (higuy > lo && __COMPARE(context, higuy, mid) == 0);
}
// OK, now we have the following:
// higuy < loguy
// lo <= higuy <= hi
// A[i] <= A[mid] for lo <= i <= higuy
// A[i] == A[mid] for higuy < i < loguy
// A[i] > A[mid] for loguy <= i < hi
// A[hi] >= A[mid] */
// We've finished the partition, now we want to sort the subarrays
// [lo, higuy] and [loguy, hi].
// We do the smaller one first to minimize stack usage.
// We only sort arrays of length 2 or more.
if (higuy - lo >= hi - loguy)
{
if (lo < higuy)
{
// Save the big recursion for later:
lostk[stkptr] = lo;
histk[stkptr] = higuy;
++stkptr;
}
if (loguy < hi)
{
// Do the small recursion:
lo = loguy;
goto recurse;
}
}
else
{
if (loguy < hi)
{
// Save the big recursion for later:
lostk[stkptr] = loguy;
histk[stkptr] = hi;
++stkptr;
}
if (lo < higuy)
{
// Do the small recursion:
hi = higuy;
goto recurse;
}
}
}
// We have sorted the array, except for any pending sorts on the stack.
// Check if there are any, and sort them:
--stkptr;
if (stkptr >= 0)
{
// Pop sub-array from the stack:
lo = lostk[stkptr];
hi = histk[stkptr];
goto recurse;
}
else
{
// Otherwise, all sub-arrays have been sorted:
return;
}
}
#undef __COMPARE
#undef __SHORTSORT