Loading
#openttdcoop - Paste
Archives
Trending
Docs
Login
ABAP
ActionScript
ActionScript 3
Ada
AIMMS3
ALGOL 68
Apache configuration
AppleScript
Apt sources
ARM ASSEMBLER
ASM
ASP
asymptote
Autoconf
Autohotkey
AutoIt
AviSynth
awk
BASCOM AVR
Bash
Basic4GL
BibTeX
BlitzBasic
bnf
Boo
Brainfuck
C
C#
C (LoadRunner)
C (Mac)
C (WinAPI)
C++
C++ (Qt)
C++ (WinAPI)
CAD DCL
CAD Lisp
CFDG
ChaiScript
Chapel
CIL
Clojure
CMake
COBOL
CoffeeScript
ColdFusion
CSS
Cuesheet
D
Dart
DCL
DCPU-16 Assembly
DCS
Delphi
Diff
DIV
DOS
dot
E
ECMAScript
Eiffel
eMail (mbox)
EPC
Erlang
Euphoria
EZT
F#
Falcon
FO (abas-ERP)
Formula One
Fortran
FreeBasic
FreeSWITCH
GADV 4CS
GAMBAS
GDB
genero
Genie
glSlang
GML
GNU/Octave
GNU Gettext
GNU make
Gnuplot
Go
Groovy
GwBasic
Haskell
Haxe
HicEst
HQ9+
HTML
HTML5
Icon
INI
Inno
INTERCAL
Io
ISPF Panel
J
Java
Java(TM) 2 Platform Standard Edition 5.0
Javascript
JCL
jQuery
KiXtart
KLone C
KLone C++
LaTeX
LDIF
Liberty BASIC
Lisp
LLVM Intermediate Representation
Locomotive Basic
Logtalk
LOLcode
Lotus Notes @Formulas
LotusScript
LScript
LSL2
Lua
MagikSF
MapBasic
Matlab M
Microchip Assembler
Microsoft Registry
mIRC Scripting
MMIX
Modula-2
Modula-3
MOS 6502 (6510) ACME Cross Assembler format
MOS 6502 (6510) Kick Assembler format
MOS 6502 (6510) TASM/64TASS 1.46 Assembler format
Motorola 68000 - HiSoft Devpac ST 2 Assembler format
Motorola 68000 Assembler
MXML
MySQL
Nagios
NetRexx
newlisp
nginx
Nimrod
NML NewGRF Meta Language
NSIS
Oberon-2
Objeck Programming Language
Objective-C
OCaml
OCaml (brief)
ooRexx
OpenBSD Packet Filter
OpenOffice.org Basic
Oracle 8 SQL
Oracle 11 SQL
Oxygene
OZ
ParaSail
PARI/GP
Pascal
PCRE
per
Perl
Perl 6
PHP
PHP (brief)
PIC16
Pike
Pixel Bender 1.0
PL/I
PL/SQL
PostgreSQL
PostScript
POVRAY
PowerBuilder
PowerShell
ProFTPd configuration
Progress
Prolog
PROPERTIES
ProvideX
Puppet
PureBasic
Python
Python for S60
q/kdb+
QBasic/QuickBASIC
QML
R / S+
Racket
Rails
RBScript
REBOL
rexx
robots.txt
RPM Specification File
Ruby
Rust
SAS
Scala
Scheme
SciLab
SCL
sdlBasic
Smalltalk
Smarty
SPARK
SPARQL
SQL
Squirrel Script
Squirrel Script with OpenTTD AI/GS
StandardML
StoneScript
SystemVerilog
T-SQL
TCL
Tera Term Macro
Text
thinBasic
TypoScript
Unicon (Unified Extended Dialect of Icon)
Uno Idl
Unreal Script
UPC
Urbi
Vala
vb.net
VBScript
Vedit macro language
Verilog
VHDL
Vim Script
Visual Basic
Visual Fox Pro
Visual Prolog
Whitespace
Whois (RPSL format)
Winbatch
X++
XBasic
XML
Xorg configuration
YAML
ZiLOG Z80 Assembler
ZXBasic
require("aystar.nut"); /** * A Road Pathfinder. * This road pathfinder tries to find a buildable / existing route for * road vehicles. You can changes the costs below using for example * roadpf.cost.turn = 30. Note that it's not allowed to change the cost * between consecutive calls to FindPath. You can change the cost before * the first call to FindPath and after FindPath has returned an actual * route. To use only existing roads, set cost.no_existing_road to * cost.max_cost. */ class Road { _aystar_class = AyStar; _max_cost = null; ///< The maximum cost for a route. _cost_tile = null; ///< The cost for a single road tile, bridge tile or tunnel tile. _cost_no_existing_road = null; ///< The cost that is added to _cost_tile if no road connection exists between two tiles. Cost is doubled when the tile to enter has no road, no bridge and no tunnel. _cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes. _cost_slope = null; ///< The extra cost if a road tile or bridge head is sloped. _cost_bridge_per_tile = null; ///< The extra cost per tile for a bridge. _cost_tunnel_per_tile = null; ///< The extra cost per tile for a tunnel. _cost_coast = null; ///< The extra cost if a new road tile or new bridge head is on a coast tile with water. _cost_drive_through = null; ///< The extra cost if a road tile is part of a drive through road station. _max_bridge_length = null; ///< The maximum length of a bridge that will be built. Length includes bridge heads. _max_tunnel_length = null; ///< The maximum length of a tunnel that will be built. Length includes entrance and exit. _pathfinder = null; ///< A reference to the used AyStar object. cost = null; ///< Used to change the costs. _running = null; _map_size_x = AIMap.GetMapSizeX(); constructor() { this._max_cost = 10000000; this._cost_tile = 100; this._cost_no_existing_road = 40; this._cost_turn = 100; this._cost_slope = 200; this._cost_bridge_per_tile = 150; this._cost_tunnel_per_tile = 120; this._cost_coast = 20; this._cost_drive_through = 800; this._max_bridge_length = 10; this._max_tunnel_length = 20; this._pathfinder = this._aystar_class(this, this._Cost, this._Estimate, this._Neighbours, this._CheckDirection); this.cost = this.Cost(this); this._running = false; } /** * Initialize a path search between sources and goals. * @param sources The source tiles. * @param goals The target tiles. * @see AyStar::InitializePath() */ function InitializePath(sources, goals) { local nsources = []; foreach (node in sources) { nsources.push([node, 0xFF]); } this._pathfinder.InitializePath(nsources, goals); } /** * Try to find the path as indicated with InitializePath with the lowest cost. * @param iterations After how many iterations it should abort for a moment. * This value should either be -1 for infinite, or > 0. Any other value * aborts immediatly and will never find a path. * @return A route if one was found, or false if the amount of iterations was * reached, or null if no path was found. * You can call this function over and over as long as it returns false, * which is an indication it is not yet done looking for a route. * @see AyStar::FindPath() */ function FindPath(iterations); }; class Road.Cost { _main = null; function _set(idx, val) { if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder."); switch (idx) { case "max_cost": this._main._max_cost = val; break; case "tile": this._main._cost_tile = val; break; case "no_existing_road": this._main._cost_no_existing_road = val; break; case "turn": this._main._cost_turn = val; break; case "slope": this._main._cost_slope = val; break; case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break; case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break; case "coast": this._main._cost_coast = val; break; case "drive_through": this._main._cost_drive_through = val; break; case "max_bridge_length": this._main._max_bridge_length = val; break; case "max_tunnel_length": this._main._max_tunnel_length = val; break; default: throw("the index '" + idx + "' does not exist"); } return val; } function _get(idx) { switch (idx) { case "max_cost": return this._main._max_cost; case "tile": return this._main._cost_tile; case "no_existing_road": return this._main._cost_no_existing_road; case "turn": return this._main._cost_turn; case "slope": return this._main._cost_slope; case "bridge_per_tile": return this._main._cost_bridge_per_tile; case "tunnel_per_tile": return this._main._cost_tunnel_per_tile; case "coast": return this._main._cost_coast; case "drive_through": return this._main._cost_drive_through; case "max_bridge_length": return this._main._max_bridge_length; case "max_tunnel_length": return this._main._max_tunnel_length; default: throw("the index '" + idx + "' does not exist"); } } constructor(main) { this._main = main; } }; function Road::FindPath(iterations) { local test_mode = AITestMode(); local ret = this._pathfinder.FindPath(iterations); this._running = (ret == false) ? true : false; return ret; } function Road::_GetBridgeNumSlopesEfficient(end_a, end_b, map_size_x = Road._map_size_x, _AITile = AITile) { // AILog.Info("_GetBridgeNumSlopesEfficient in"); // local before = AIController.GetOpsTillSuspend(); local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = _AITile.GetSlope(end_a); if (!((slope == _AITile.SLOPE_NE && direction == 1) || (slope == _AITile.SLOPE_SE && direction == -map_size_x) || (slope == _AITile.SLOPE_SW && direction == -1) || (slope == _AITile.SLOPE_NW && direction == map_size_x) || slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_E || slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_W)) { slopes++; } slope = _AITile.GetSlope(end_b); direction = -direction; if (!((slope == _AITile.SLOPE_NE && direction == 1) || (slope == _AITile.SLOPE_SE && direction == -map_size_x) || (slope == _AITile.SLOPE_SW && direction == -1) || (slope == _AITile.SLOPE_NW && direction == map_size_x) || slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_E || slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_W)) { slopes++; } // AILog.Info("Measured ops _GetBridgeNumSlopesEfficient: " + (before - AIController.GetOpsTillSuspend()) + " ; end_a = " + end_a + " ; end_b = " + end_b); // AILog.Info("_GetBridgeNumSlopesEfficient out"); return slopes; } function Road::_GetBridgeNumSlopes(end_a, end_b) { // AILog.Info("_GetBridgeNumSlopes in"); // local before = AIController.GetOpsTillSuspend(); local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = AITile.GetSlope(end_a); if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } local slope = AITile.GetSlope(end_b); direction = -direction; if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } // AILog.Info("Measured ops _GetBridgeNumSlopes: " + (before - AIController.GetOpsTillSuspend()) + " ; end_a = " + end_a + " ; end_b = " + end_b); // AILog.Info("_GetBridgeNumSlopes out"); return slopes; } function Road::_CostHelperEfficient(self, path, new_tile, coast_cost_only = null, _AIBridge = AIBridge, _AITunnel = AITunnel, _AIRoad = AIRoad, _AITile = AITile, _AICompany = AICompany) { // AILog.Info("_CostHelperEfficient in"); // local before = AIController.GetOpsTillSuspend(); local prev_tile = path.GetTile(); local cost = 0; if (coast_cost_only != true) { cost += self._cost_tile; local dist = 0; local par_tile = 0; if (path.GetParent() != null) { dist = AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile); par_tile = path.GetParent().GetTile(); } if (dist == 1) { /* Check for a turn. We do this by substracting the TileID of the current node from * the TileID of the previous node and comparing that to the difference between the * previous node and the node before that. */ if (prev_tile - par_tile != new_tile - prev_tile) { cost += self._cost_turn; } /* Check if the last tile was sloped. */ if (!_AIBridge.IsBridgeTile(prev_tile) && !_AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRoadEfficient(par_tile, prev_tile, new_tile)) { cost += self._cost_slope; } } if (!_AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { cost += self._cost_no_existing_road * 2; if (_AIRoad.IsRoadTile(new_tile) || _AIBridge.IsBridgeTile(new_tile) || _AITunnel.IsTunnelTile(new_tile) || (_AIRoad.IsRoadStationTile(new_tile) || _AIRoad.IsRoadDepotTile(new_tile)) && _AITile.GetOwner(new_tile) == _AICompany.ResolveCompanyID(_AICompany.COMPANY_SELF)) { cost -= self._cost_no_existing_road; } } if (_AIRoad.IsDriveThroughRoadStationTile(new_tile)) { cost += self._cost_drive_through; } } if (coast_cost_only != null) { /* Check if the new tile is a coast tile with water. */ if (_AITile.IsCoastTile(new_tile) && _AITile.HasTransportType(new_tile, AITile.TRANSPORT_WATER)) { cost += self._cost_coast; } } // AILog.Info("Measured ops _CostHelperEfficient: " + (before - AIController.GetOpsTillSuspend()) + " ; coast_cost_only = " + (coast_cost_only == null ? "null" : coast_cost_only) + " ; par_tile = " + (path.GetParent() != null ? path.GetParent().GetTile() : "null") + " ; prev_tile = " + prev_tile + " ; new_tile = " + new_tile); // AILog.Info("_CostHelperEfficient out"); return cost; } function Road::_CostHelper(self, path, new_tile, coast_cost_only = null) { // AILog.Info("_CostHelper in"); // local before = AIController.GetOpsTillSuspend(); local prev_tile = path.GetTile(); local cost = 0; if (coast_cost_only != true) { cost += self._cost_tile; local dist = 0; local par_tile = 0; if (path.GetParent() != null) { dist = AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile); par_tile = path.GetParent().GetTile(); } if (dist == 1) { /* Check for a turn. We do this by substracting the TileID of the current node from * the TileID of the previous node and comparing that to the difference between the * previous node and the node before that. */ if ((prev_tile - par_tile) != (new_tile - prev_tile)) { cost += self._cost_turn; } /* Check if the last tile was sloped. */ if (!AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRoad(par_tile, prev_tile, new_tile)) { cost += self._cost_slope; } } if (!AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { cost += self._cost_no_existing_road * 2; if (AIRoad.IsRoadTile(new_tile) || AIBridge.IsBridgeTile(new_tile) || AITunnel.IsTunnelTile(new_tile) || (AIRoad.IsRoadStationTile(new_tile) || AIRoad.IsRoadDepotTile(new_tile)) && AITile.GetOwner(new_tile) == AICompany.ResolveCompanyID(AICompany.COMPANY_SELF)) { cost -= self._cost_no_existing_road; } } if (AIRoad.IsDriveThroughRoadStationTile(new_tile)) { cost += self._cost_drive_through; } } if (coast_cost_only != null) { /* Check if the new tile is a coast tile with water. */ if (AITile.IsCoastTile(new_tile) && AITile.HasTransportType(new_tile, AITile.TRANSPORT_WATER)) { cost += self._cost_coast; } } // AILog.Info("Measured ops _CostHelper: " + (before - AIController.GetOpsTillSuspend()) + " ; coast_cost_only = " + (coast_cost_only == null ? "null" : coast_cost_only) + " ; par_tile = " + (path.GetParent() != null ? path.GetParent().GetTile() : "null") + " ; prev_tile = " + prev_tile + " ; new_tile = " + new_tile); // AILog.Info("_CostHelper out"); return cost; } function Road::_Cost(self, path, new_tile, new_direction, _AIBridge = AIBridge, _AITunnel = AITunnel) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); local dist = AIMap.DistanceManhattan(new_tile, prev_tile); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (_AIBridge.IsBridgeTile(new_tile)) { if (_AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelperEfficient(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * self._cost_tile + self._GetBridgeNumSlopesEfficient(new_tile, prev_tile) * self._cost_slope; } if (_AITunnel.IsTunnelTile(new_tile)) { if (_AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelperEfficient(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * self._cost_tile; } /* If the two tiles are more than 1 tile apart, the pathfinder wants a bridge or tunnel * to be built. It isn't an existing bridge / tunnel, as that case is already handled. */ if (dist > 1) { /* Check if we should build a bridge or a tunnel. */ if (_AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2); } else { return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2) + self._GetBridgeNumSlopesEfficient(new_tile, prev_tile) * self._cost_slope + self._CostHelperEfficient(self, path, new_tile, true); } } return path.GetCost() + self._CostHelperEfficient(self, path, new_tile, false); } function Road::_CostOriginal(self, path, new_tile, new_direction) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); local dist = AIMap.DistanceManhattan(new_tile, prev_tile); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (AIBridge.IsBridgeTile(new_tile)) { if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelper(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } if (AITunnel.IsTunnelTile(new_tile)) { if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) { return path.GetCost() + self._CostHelper(self, path, new_tile); } return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * self._cost_tile; } /* If the two tiles are more than 1 tile apart, the pathfinder wants a bridge or tunnel * to be built. It isn't an existing bridge / tunnel, as that case is already handled. */ if (dist > 1) { /* Check if we should build a bridge or a tunnel. */ if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { return path.GetCost() + (dist + 1) * self._cost_tunnel_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2); } else { return path.GetCost() + (dist + 1) * self._cost_bridge_per_tile + dist * (self._cost_tile + self._cost_no_existing_road * 2) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope + self._CostHelper(self, path, new_tile, true); } } return path.GetCost() + self._CostHelper(self, path, new_tile, false); } function Road::_Estimate(self, cur_tile, cur_direction, goal_tiles, _AIMap = AIMap) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { min_cost = min(_AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); } return min_cost; } function Road::_EstimateOriginal(self, cur_tile, cur_direction, goal_tiles) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { min_cost = min(AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); } return min_cost; } function Road::_Neighbours(self, path, cur_node, _AIBridge = AIBridge, _AITunnel = AITunnel, _AITile = AITile, _AIMap = AIMap, _AIRoad = AIRoad, _AIRail = AIRail, _AICompany = AICompany, _AIVehicle = AIVehicle) { /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; // AILog.Info("_Neighbours (efficient) in"); // local before = AIController.GetOpsTillSuspend(); local par = path.GetParent() != null; local last_node = par ? path.GetParent().GetTile() : 0; local tiles = []; /* Check if the current tile is part of a bridge or tunnel. */ local other_end = 0; if (_AIBridge.IsBridgeTile(cur_node)) { other_end = _AIBridge.GetOtherBridgeEnd(cur_node); } else if (_AITunnel.IsTunnelTile(cur_node)) { other_end = _AITunnel.GetOtherTunnelEnd(cur_node); } if (other_end && _AITile.HasTransportType(cur_node, _AITile.TRANSPORT_ROAD)) { // local other_end = _AIBridge.IsBridgeTile(cur_node) ? _AIBridge.GetOtherBridgeEnd(cur_node) : _AITunnel.GetOtherTunnelEnd(cur_node); local next_tile = cur_node + (cur_node - other_end) / _AIMap.DistanceManhattan(cur_node, other_end); if ((_AIRoad.AreRoadTilesConnected(cur_node, next_tile) || _AIRoad.IsRoadTile(next_tile)) && !_AIRail.IsLevelCrossingTile(next_tile) && (!_AIRoad.IsDriveThroughRoadStationTile(next_tile) || _AIRoad.GetRoadStationFrontTile(next_tile) == cur_node || _AIRoad.GetDriveThroughBackTile(next_tile) == cur_node) || _AITile.IsBuildable(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } /* The other end of the bridge / tunnel is a neighbour. */ tiles.push([other_end, self._GetDirectionEfficient(next_tile, cur_node, true) << 4]); } else if (last_node && _AIMap.DistanceManhattan(cur_node, last_node) > 1) { local next_tile = cur_node + (cur_node - last_node) / _AIMap.DistanceManhattan(cur_node, last_node); if (_AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !_AIRail.IsLevelCrossingTile(next_tile) || _AIRoad.BuildRoad(cur_node, next_tile) && !_AIRail.IsRailTile(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } } else { local offsets = [_AIMap.GetTileIndex(0, 1), _AIMap.GetTileIndex(0, -1), _AIMap.GetTileIndex(1, 0), _AIMap.GetTileIndex(-1, 0)]; /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* We add them to the to the neighbours-list if one of the following applies: * 1) There already is a connection between the current tile and the next tile, and it's not a level crossing. * 2) We can build a road to the next tile, except when it's a level crossing. * We can connect to a regular road station or a road depot owned by us. * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ if (_AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !_AIRail.IsLevelCrossingTile(next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } else if ((_AITile.IsBuildable(next_tile) || _AIRoad.IsRoadTile(next_tile) && !_AIRail.IsLevelCrossingTile(next_tile) || (_AIRoad.IsRoadStationTile(next_tile) || _AIRoad.IsRoadDepotTile(next_tile)) && _AITile.GetOwner(next_tile) == _AICompany.ResolveCompanyID(_AICompany.COMPANY_SELF)) && (!par || _AIRoad.CanBuildConnectedRoadPartsHere(cur_node, last_node, next_tile)) && _AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } else if (self._CheckTunnelBridgeEfficient(cur_node, next_tile) && (!par || _AIRoad.CanBuildConnectedRoadPartsHere(cur_node, last_node, next_tile)) && _AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirectionEfficient(cur_node, next_tile, false)]); } } if (par) { // local bridges = self._GetTunnelsBridgesEfficient(path.GetParent().GetTile(), cur_node, self._GetDirectionEfficient(path.GetParent().GetTile(), cur_node, true) << 4); // foreach (tile in bridges) { // tiles.push(tile); // } /* * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ local bridge_dir = self._GetDirectionEfficient(last_node, cur_node, true) << 4; for (local i = 2; i < self._max_bridge_length;) { local target = cur_node + i * (cur_node - last_node); local bridge_list = AIBridgeList_Length(++i); if (!bridge_list.IsEmpty() && _AIBridge.BuildBridge(_AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = _AITile.GetSlope(cur_node); if (slope == _AITile.SLOPE_SW || slope == _AITile.SLOPE_NW || slope == _AITile.SLOPE_SE || slope == _AITile.SLOPE_NE) { local other_tunnel_end = _AITunnel.GetOtherTunnelEnd(cur_node); if (_AIMap.IsValidTile(other_tunnel_end)) { local tunnel_length = _AIMap.DistanceManhattan(cur_node, other_tunnel_end); if (_AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && cur_node + (cur_node - other_tunnel_end) / tunnel_length == last_node && tunnel_length < self._max_tunnel_length && _AITunnel.BuildTunnel(_AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } } } } } // AILog.Info("Measured ops _Neighbours (efficient): " + (before - AIController.GetOpsTillSuspend()) + " ; cur_node = " + cur_node); // AILog.Info("_Neighbours (efficient) out"); return tiles; } function Road::_NeighboursOriginal(self, path, cur_node) { /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; // AILog.Info("_Neighbours in"); // local before = AIController.GetOpsTillSuspend(); local tiles = []; /* Check if the current tile is part of a bridge or tunnel. */ if ((AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) && AITile.HasTransportType(cur_node, AITile.TRANSPORT_ROAD)) { local other_end = AIBridge.IsBridgeTile(cur_node) ? AIBridge.GetOtherBridgeEnd(cur_node) : AITunnel.GetOtherTunnelEnd(cur_node); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if ((AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AIRoad.IsRoadTile(next_tile)) && !AIRail.IsLevelCrossingTile(next_tile) && (!AIRoad.IsDriveThroughRoadStationTile(next_tile) || AIRoad.GetRoadStationFrontTile(next_tile) == cur_node || AIRoad.GetDriveThroughBackTile(next_tile) == cur_node) || AITile.IsBuildable(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } /* The other end of the bridge / tunnel is a neighbour. */ tiles.push([other_end, self._GetDirection(next_tile, cur_node, true) << 4]); } else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) { local other_end = path.GetParent().GetTile(); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !AIRail.IsLevelCrossingTile(next_tile) || AIRoad.BuildRoad(cur_node, next_tile) && !AIRail.IsRailTile(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } else { local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1), AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)]; /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* We add them to the to the neighbours-list if one of the following applies: * 1) There already is a connection between the current tile and the next tile, and it's not a level crossing. * 2) We can build a road to the next tile, except when it's a level crossing. * We can connect to a regular road station or a road depot owned by us. * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) && !AIRail.IsLevelCrossingTile(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if ((AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile) && !AIRail.IsLevelCrossingTile(next_tile) || (AIRoad.IsRoadStationTile(next_tile) || AIRoad.IsRoadDepotTile(next_tile)) && AITile.GetOwner(next_tile) == AICompany.ResolveCompanyID(AICompany.COMPANY_SELF)) && (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if (self._CheckTunnelBridge(cur_node, next_tile) && (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } if (path.GetParent() != null) { local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetTile(), cur_node, true) << 4); foreach (tile in bridges) { tiles.push(tile); } } } // AILog.Info("Measured ops _Neighbours: " + (before - AIController.GetOpsTillSuspend()) + " ; cur_node = " + cur_node); // AILog.Info("_Neighbours out"); // local tiles2 = self._NeighboursEfficient(self, path, cur_node); // assert(tiles.len() == tiles2.len()); return tiles; } function Road::_CheckDirection(self, tile, existing_direction, new_direction) { return false; } function Road::_GetDirectionEfficient(from, to, is_bridge, map_size_x = Road._map_size_x, _AITile = AITile) { if (!is_bridge && _AITile.GetSlope(to) == _AITile.SLOPE_FLAT) return 0xFF; local difference = from - to; if (difference == 1) return 1; if (difference == -1) return 2; if (difference == map_size_x) return 4; if (difference == -map_size_x) return 8; } function Road::_GetDirection(from, to, is_bridge) { if (!is_bridge && AITile.GetSlope(to) == AITile.SLOPE_FLAT) return 0xFF; if (from - to == 1) return 1; if (from - to == -1) return 2; if (from - to == AIMap.GetMapSizeX()) return 4; if (from - to == -AIMap.GetMapSizeX()) return 8; } /** * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ function Road::_GetTunnelsBridgesEfficient(last_node, cur_node, bridge_dir, _AIBridge = AIBridge, _AITile = AITile, _AIMap = AIMap, _AITunnel = AITunnel, _AIVehicle = AIVehicle) { local tiles = []; for (local i = 2; i < this._max_bridge_length;) { local target = cur_node + i * (cur_node - last_node); local bridge_list = AIBridgeList_Length(++i); if (!bridge_list.IsEmpty() && _AIBridge.BuildBridge(_AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = _AITile.GetSlope(cur_node); if (slope != _AITile.SLOPE_SW && slope != _AITile.SLOPE_NW && slope != _AITile.SLOPE_SE && slope != _AITile.SLOPE_NE) return tiles; local other_tunnel_end = _AITunnel.GetOtherTunnelEnd(cur_node); if (!_AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = _AIMap.DistanceManhattan(cur_node, other_tunnel_end); if (_AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && cur_node + (cur_node - other_tunnel_end) / tunnel_length == last_node && tunnel_length < _max_tunnel_length && _AITunnel.BuildTunnel(_AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } /** * Get a list of all bridges and tunnels that can be built from the * current tile. Tunnels will only be built if no terraforming * is needed on both ends. */ function Road::_GetTunnelsBridges(last_node, cur_node, bridge_dir) { local tiles = []; for (local i = 2; i < this._max_bridge_length; i++) { local bridge_list = AIBridgeList_Length(i + 1); local target = cur_node + i * (cur_node - last_node); if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } local slope = AITile.GetSlope(cur_node); if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles; local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node); if (!AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end); local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length; if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VT_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } function Road::_IsSlopedRoadEfficient(start, middle, end, map_size_x = Road._map_size_x, _AITile = AITile) { local NW = middle - map_size_x; local NE = middle - 1; local SE = middle + map_size_x; local SW = middle + 1; NW = NW == start || NW == end; //Set to true if we want to build a road to / from the north-west NE = NE == start || NE == end; //Set to true if we want to build a road to / from the north-east SE = SE == start || SE == end; //Set to true if we want to build a road to / from the south-west SW = SW == start || SW == end; //Set to true if we want to build a road to / from the south-east /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = _AITile.GetSlope(middle); /* A road on a steep slope is always sloped. */ if (_AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the road is sloped. */ if (slope == _AITile.SLOPE_N || slope == _AITile.SLOPE_W) return true; if (slope == _AITile.SLOPE_S || slope == _AITile.SLOPE_E) return true; if (NW && (slope == _AITile.SLOPE_NW || slope == _AITile.SLOPE_SE)) return true; if (NE && (slope == _AITile.SLOPE_NE || slope == _AITile.SLOPE_SW)) return true; return false; } function Road::_IsSlopedRoad(start, middle, end) { local NW = 0; //Set to true if we want to build a road to / from the north-west local NE = 0; //Set to true if we want to build a road to / from the north-east local SW = 0; //Set to true if we want to build a road to / from the south-west local SE = 0; //Set to true if we want to build a road to / from the south-east if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1; if (middle - 1 == start || middle - 1 == end) NE = 1; if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1; if (middle + 1 == start || middle + 1 == end) SW = 1; /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = AITile.GetSlope(middle); /* A road on a steep slope is always sloped. */ if (AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the road is sloped. */ if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true; if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true; if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true; if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true; return false; } function Road::_CheckTunnelBridgeEfficient(current_tile, new_tile, map_size_x = Road._map_size_x, _AIBridge = AIBridge, _AITunnel = AITunnel) { local dir2; if (_AIBridge.IsBridgeTile(new_tile)) { dir2 = _AIBridge.GetOtherBridgeEnd(new_tile) - new_tile; } else if (_AITunnel.IsTunnelTile(new_tile)) { dir2 = _AITunnel.GetOtherTunnelEnd(new_tile) - new_tile; } else { return false; } local dir = new_tile - current_tile; if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; dir = abs(dir); dir2 = abs(dir2); if ((dir >= map_size_x && dir2 < map_size_x) || (dir < map_size_x && dir2 >= map_size_x)) return false; return true; } function Road::_CheckTunnelBridge(current_tile, new_tile) { if (!AIBridge.IsBridgeTile(new_tile) && !AITunnel.IsTunnelTile(new_tile)) return false; local dir = new_tile - current_tile; local other_end = AIBridge.IsBridgeTile(new_tile) ? AIBridge.GetOtherBridgeEnd(new_tile) : AITunnel.GetOtherTunnelEnd(new_tile); local dir2 = other_end - new_tile; if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; dir = abs(dir); dir2 = abs(dir2); if ((dir >= AIMap.GetMapSizeX() && dir2 < AIMap.GetMapSizeX()) || (dir < AIMap.GetMapSizeX() && dir2 >= AIMap.GetMapSizeX())) return false; return true; }
Mark as private
for 30 minutes
for 6 hours
for 1 day
for 1 week
for 1 month
for 1 year
forever