Loading
#openttdcoop - Paste
Archives
Trending
Docs
Login
ABAP
ActionScript
ActionScript 3
Ada
AIMMS3
ALGOL 68
Apache configuration
AppleScript
Apt sources
ARM ASSEMBLER
ASM
ASP
asymptote
Autoconf
Autohotkey
AutoIt
AviSynth
awk
BASCOM AVR
Bash
Basic4GL
BibTeX
BlitzBasic
bnf
Boo
Brainfuck
C
C#
C (LoadRunner)
C (Mac)
C (WinAPI)
C++
C++ (Qt)
C++ (WinAPI)
CAD DCL
CAD Lisp
CFDG
ChaiScript
Chapel
CIL
Clojure
CMake
COBOL
CoffeeScript
ColdFusion
CSS
Cuesheet
D
Dart
DCL
DCPU-16 Assembly
DCS
Delphi
Diff
DIV
DOS
dot
E
ECMAScript
Eiffel
eMail (mbox)
EPC
Erlang
Euphoria
EZT
F#
Falcon
FO (abas-ERP)
Formula One
Fortran
FreeBasic
FreeSWITCH
GADV 4CS
GAMBAS
GDB
genero
Genie
glSlang
GML
GNU/Octave
GNU Gettext
GNU make
Gnuplot
Go
Groovy
GwBasic
Haskell
Haxe
HicEst
HQ9+
HTML
HTML5
Icon
INI
Inno
INTERCAL
Io
ISPF Panel
J
Java
Java(TM) 2 Platform Standard Edition 5.0
Javascript
JCL
jQuery
KiXtart
KLone C
KLone C++
LaTeX
LDIF
Liberty BASIC
Lisp
LLVM Intermediate Representation
Locomotive Basic
Logtalk
LOLcode
Lotus Notes @Formulas
LotusScript
LScript
LSL2
Lua
MagikSF
MapBasic
Matlab M
Microchip Assembler
Microsoft Registry
mIRC Scripting
MMIX
Modula-2
Modula-3
MOS 6502 (6510) ACME Cross Assembler format
MOS 6502 (6510) Kick Assembler format
MOS 6502 (6510) TASM/64TASS 1.46 Assembler format
Motorola 68000 - HiSoft Devpac ST 2 Assembler format
Motorola 68000 Assembler
MXML
MySQL
Nagios
NetRexx
newlisp
nginx
Nimrod
NML NewGRF Meta Language
NSIS
Oberon-2
Objeck Programming Language
Objective-C
OCaml
OCaml (brief)
ooRexx
OpenBSD Packet Filter
OpenOffice.org Basic
Oracle 8 SQL
Oracle 11 SQL
Oxygene
OZ
ParaSail
PARI/GP
Pascal
PCRE
per
Perl
Perl 6
PHP
PHP (brief)
PIC16
Pike
Pixel Bender 1.0
PL/I
PL/SQL
PostgreSQL
PostScript
POVRAY
PowerBuilder
PowerShell
ProFTPd configuration
Progress
Prolog
PROPERTIES
ProvideX
Puppet
PureBasic
Python
Python for S60
q/kdb+
QBasic/QuickBASIC
QML
R / S+
Racket
Rails
RBScript
REBOL
rexx
robots.txt
RPM Specification File
Ruby
Rust
SAS
Scala
Scheme
SciLab
SCL
sdlBasic
Smalltalk
Smarty
SPARK
SPARQL
SQL
Squirrel Script
Squirrel Script with OpenTTD AI/GS
StandardML
StoneScript
SystemVerilog
T-SQL
TCL
Tera Term Macro
Text
thinBasic
TypoScript
Unicon (Unified Extended Dialect of Icon)
Uno Idl
Unreal Script
UPC
Urbi
Vala
vb.net
VBScript
Vedit macro language
Verilog
VHDL
Vim Script
Visual Basic
Visual Fox Pro
Visual Prolog
Whitespace
Whois (RPSL format)
Winbatch
X++
XBasic
XML
Xorg configuration
YAML
ZiLOG Z80 Assembler
ZXBasic
#!/usr/bin/env python3 # Programme to calculate the best build strategy for a ressource with N given fields import numpy as np import argparse import math #parser = argparse.ArgumentParser(description='Show best build strategy for ressource fields') #parser.add_argument('integer', metavar='N fields', type=int, nargs=1, dest=n_fields, help='number of fields for that ress') #args = parser.parse_args() # Storage needed without normal storage and 1st level 20 great storage: #needed_storage = 600000 # Build slots dedicated to great storages beyond the 1st level 20 great storage: # Data for the great storage levels (w/o plus account) # level, time*4 [minutes], storage capacity holz = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 40, 100, 50, 60, 25, 2, 1, 5], [2, 65, 165, 85, 100, 60+50, 1, 1, 9], [3, 110, 280, 140, 165, 6*60, 1, 2, 15], [4, 185, 465, 235, 280, 24*60, 1, 2, 22], [5, 310, 780, 390, 465, 48*60, 1, 2, 33], [6, 520, 1300, 650, 780, 1*3600+36*60, 2, 3, 50], [7, 870, 2170, 1085, 1300, 2*3600+25*60, 2, 4, 70], [8, 1450, 3625, 1810, 2175, 4*3600+50*60, 2, 4, 100], [9, 2420, 6050, 3025, 3630, 7*3600+10*60, 2, 5, 145], [10, 4040, 10105, 5050, 6060, 10*3600+50*60, 2, 6, 200], [11, 6750, 16870, 8435, 10125, 14*3600+25*60, 2, 7, 280], [12, 11270, 28175, 14090, 16905, 18*3600, 2, 9, 375], [13, 18820, 47055, 23525, 28230, 21*3600+35*60, 2, 11, 495], [14, 31430, 78580, 39290, 47150, 26*3600+25*60, 2, 13, 635], [15, 52490, 131230, 65615, 78740, 30*3600, 2, 15, 800], [16, 87660, 219155, 109575, 131490, 36*3600, 3, 18, 1000], [17, 146395, 365985, 182995, 219590, 48*3600, 3, 22, 1300], [18, 244480, 611195, 305600, 366715, 60*3600, 3, 27, 1600], [19, 408280, 1020695, 510350, 612420, 72*3600, 3, 32, 2000], [20, 681825, 1704565, 852280, 1022740, 96*3600, 3, 38, 2500] ]) lehm = np.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 2], [1, 80, 40, 80, 50, 20, 2, 1, 5], [2, 135, 65, 135, 85, 1*60+40, 1, 1, 9], [3, 225, 110, 225, 140, 5*60+30, 1, 2, 15], [4, 375, 185, 375, 235, 22*60, 1, 2, 22], [5, 620, 310, 620, 390, 44*60, 1, 2, 33], [6, 1040, 520, 1040, 650, 1*3600+28*60, 2, 3, 50], [7, 1735, 870, 1735, 1085, 2*3600+10*60, 2, 4, 70], [8, 2900, 1450, 2900, 1810, 4*3600+25*60, 2, 4, 100], [9, 4840, 2420, 4840, 3025, 6*3600+35*60, 2, 5, 145], [10, 8080, 4040, 8080, 5050, 9*3600+55*60, 2, 6, 200], [11, 13500, 6750, 13500, 8435, 13*3600+10*60, 2, 7, 280], [12, 22540, 11270, 22540, 14090, 16*3600+30*60, 2, 9, 375], [13, 37645, 18820, 37645, 23525, 19*3600+50*60, 2, 11, 495], [14, 62865, 31430, 62865, 39290, 24*3600+10*60, 2, 13, 635], [15, 104985, 52490, 104985, 65615, 27*3600+30*60, 2, 15, 800], [16, 175320, 87660, 175320, 109575, 33*3600, 3, 18, 1000], [17, 292790, 146395, 292790, 182995, 44*3600, 3, 22, 1300], [18, 488955, 244480, 488955, 305600, 55*3600, 3, 27, 1600], [19, 816555, 408280, 816555, 510350, 66*3600, 3, 32, 2000], [20, 1363650, 681825, 1363650, 852280, 88*3600, 3, 38, 2500] ]) eisen = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 2], [1, 100, 80, 30, 60, 30, 3, 1, 5], [2, 165, 135, 50, 100, 2*60+15, 2, 1, 9], [3, 280, 225, 85, 165, 7*60+30, 2, 2, 15], [4, 465, 375, 140, 280, 30*60, 2, 2, 22], [5, 780, 620, 235, 465, 1*3600, 2, 2, 33], [6, 1300, 1040, 390, 780, 2*3600, 2, 3, 50], [7, 2170, 1735, 650, 1300, 3*3600, 2, 4, 70], [8, 3625, 2900, 1085, 2175, 6*3600, 2, 4, 100], [9, 6050, 4840, 1815, 3630, 9*3600, 2, 5, 145], [10, 10105, 8080, 3030, 6060, 13*3600+30*60, 2, 6, 200], [11, 16870, 13500, 5060, 10125, 18*3600, 3, 7, 280], [12, 28175, 22540, 8455, 16905, 22*3600+30*60, 3, 9, 375], [13, 47055, 37645, 14115, 28230, 27*3600, 3, 11, 495], [14, 78580, 62865, 23575, 47150, 33*3600, 3, 13, 635], [15, 131230, 104985, 39370, 78740, 37*3600+30*60, 3, 15, 800], [16, 219155, 175320, 65745, 131490, 45*3600, 3, 18, 1000], [17, 365985, 292790, 109795, 219590, 60*3600, 3, 22, 1300], [18, 611195, 488955, 183360, 366715, 75*3600, 3, 27, 1600], [19, 1020695, 816555, 306210, 612420, 90*3600, 3, 32, 2000], [20, 1704565, 1363650, 511370, 1022740, 120*3600, 3, 38, 2500] ]) korn = np.array([ [1, 75, 90, 85, 0, 20, 0, 1, 5], [2, 125, 150, 140, 0, 1*60+30, 0, 1, 9], [3, 210, 250, 235, 0, 5*60, 0, 2, 15], [4, 350, 420, 395, 0, 20*60, 0, 2, 22], [5, 585, 700, 660, 0, 40*60, 0, 2, 33], [6, 975, 1170, 1105, 0, 1*3600+20*60, 1, 3, 50], [7, 1625, 1950, 1845, 0, 2*3600, 1, 4, 70], [8, 2715, 3260, 3080, 0, 4*3600, 1, 4, 100], [9, 4535, 5445, 5140, 0, 6*3600, 1, 5, 145], [10, 7575, 9095, 8590, 0, 9*3600, 1, 6, 200], [11, 12655, 15185, 14340, 0, 12*3600, 1, 7, 280], [12, 21130, 25360, 23950, 0, 15*3600, 1, 9, 375], [13, 35290, 42350, 39995, 0, 18*3600, 1, 11, 495], [14, 58935, 70720, 66795, 0, 22*3600, 1, 13, 635], [15, 98420, 118105, 111545, 0, 25*3600, 1, 15, 800], [16, 164365, 197240, 186280, 0, 30*3600, 2, 18, 1000], [17, 274490, 329385, 311085, 0, 40*3600, 2, 22, 1300], [18, 458395, 550075, 519515, 0, 50*3600, 2, 27, 1600], [19, 765520, 918625, 867590, 0, 60*3600, 2, 32, 2000], [20, 1278420, 1534105, 1448880, 0, 80*3600, 2, 38, 2500] ]) muehle = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 500, 440, 380, 1240, 8*60, 3, 1, 5], [2, 900, 790, 685, 2230, 25*60, 2, 1, 10], [3, 1620, 1425, 1230, 4020, 55*60, 2, 2, 15], [4, 2915, 2565, 2215, 7230, 2*3600+20*60, 2, 2, 20], [5, 5250, 4620, 3990, 13015, 4*3600, 2, 2, 25] ]) baeckerei = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1200, 1480, 870, 1600, 13*60, 4, 1, 5], [2, 2160, 2665, 1565, 2880, 30*60, 2, 1, 10], [3, 3890, 4795, 2820, 5185, 1*3600, 2, 2, 15], [4, 7000, 8630, 5075, 9330, 2*3600+25*60, 2, 2, 20], [5, 12595, 15535, 9135, 16795, 4*3600+5*60, 2, 2, 25] ]) saegewerk = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 520, 380, 290, 90, 8*60, 4, 1, 5], [2, 935, 685, 520, 160, 25*60, 2, 1, 10], [3, 1685, 1230, 940, 290, 55*60, 2, 2, 15], [4, 3035, 2215, 1690, 525, 2*3600+20*60, 2, 2, 20], [5, 5460, 3990, 3045, 945, 4*3600, 2, 2, 25] ]) lehmbrennerei = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 440, 480, 320, 50, 8*60, 3, 1, 5], [2, 790, 865, 575, 90, 25*60, 2, 1, 10], [3, 1425, 1555, 1035, 160, 55*60, 2, 2, 15], [4, 2565, 2800, 1865, 290, 2*3600+20*60, 2, 2, 20], [5, 4620, 5040, 3360, 525, 4*3600, 2, 2, 25] ]) eisengiesserei = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 200, 450, 510, 120, 8*60, 6, 1, 5], [2, 360, 810, 920, 215, 25*60, 3, 1, 10], [3, 650, 1460, 1650, 390, 55*60, 3, 2, 15], [4, 1165, 2625, 2975, 700, 2*3600+20*60, 3, 2, 20], [5, 2100, 4725, 5355, 1260, 4*3600, 3, 2, 25] ]) houseDict = {} houseDict['holz'] = holz houseDict['lehm'] = lehm houseDict['eisen']= eisen houseDict['korn'] = korn houseDict['saegewerk'] = saegewerk houseDict['lehmbrennerei'] = lehmbrennerei houseDict['eisengiesserei'] = eisengiesserei houseDict['muehle'] = muehle houseDict['baeckerei'] = baeckerei MaxDict = {} MaxDict['holz'] = 10 MaxDict['eisen'] = 10 MaxDict['lehm'] = 10 MaxDict['korn'] = 10 MaxDict['saegewerk'] = 5 MaxDict['lehmbrennerei'] = 5 MaxDict['eisengiesserei'] = 5 MaxDict['muehle'] = 5 MaxDict['baeckerei'] = 5 BonusDict = {} BonusDict['holz'] = ['saegewerk'] BonusDict['lehm'] = ['lehmbrennerei'] BonusDict['eisen'] = ['eisengiesserei'] BonusDict['korn'] = ['muehle','baeckerei'] Felder = ['holz','lehm','eisen','korn'] Index = {} Index['holz'] = 0 Index['lehm'] = 1 Index['eisen'] = 2 Index['korn'] = 3 max_prod = np.zeros((4,)) fortschritt = 0 configs = {} Requirements = {} Requirements[('saegewerk',1)] = [('holz', 10)] Requirements[('lehmbrennerei',1)] = [('lehm', 10)] Requirements[('eisengiesserei', 1)] = [('eisen', 10)] Requirements[('muehle', 1)] = [('korn', 5)] Requirements[('baeckerei', 1)] = [('muehle', 5), ('korn', 10)] def get_build_cost(itemtype, level): data = houseDict[itemtype] if data is not None: return data[level,1:5] return np.zeros((4,)) def get_build_time(itemtype, level): data = houseDict[itemtype] if data is not None: return data[level,5] / 2 # time is for HG1, we want for HG20 return 0 def get_production(item): itemtype = item[0] level = item[1] if itemtype not in Felder: return 0 data = houseDict[itemtype] return data[level, 8] class RessVillage: def __init__(self, levels, max_levels, production=np.zeros((4,)), buildtime=0, cost=np.zeros((4,)), build_sequence=[]): self.levels = levels self.max_levels = max_levels self.production = production self.buildtime = buildtime self.cost = cost # holz, lehm, eisen, korn self.build_sequence = build_sequence def get_bonus(self, fieldtype): if fieldtype not in Felder: return 0 haeuser = BonusDict[fieldtype] bonus = 0 for haus in haeuser: for item in self.levels: if item[0] == haus: bonus += 5 * item[1] return bonus def get_total_production(self): global fortschritt production = np.zeros((4,)) bonus = {} for fieldtype in Felder: bonus[fieldtype] = self.get_bonus(fieldtype) for item in self.levels: if item[0] not in Felder: continue item_type = item[0] item_level = item[1] prod = get_production(item) bonus_prod = round(prod * bonus[item_type] / 100) if fortschritt == 1: print("Item: ",item_type) print("Bonus: ",bonus) print("Level: ",self.levels) prod = prod + bonus_prod production[Index[item_type]] += prod return production def can_build_item(self, item): if item not in Requirements: return True requirements = Requirements[item] ok = np.zeros(len(requirements)) for i,requirement in enumerate(requirements): if requirement in self.levels: ok[i] = 1 return ok.prod() == 1 def build_item(self, index): item = self.levels[index] item_type = item[0] item_level = item[1] if not self.can_build_item((item_type, item_level+1)): return time = get_build_time(item_type, item_level+1) cost = get_build_cost(item_type, item_level+1) production = self.get_total_production() * time/3600 # production is in hours, build time in seconds build_sequence = [item_type, item_level+1] # print(item) newlevels = self.levels.copy() newlevels[index] = (item_type, item_level+1) #print(newlevels) #print(cost, self.cost) build_sequence = self.build_sequence.copy() build_sequence.append((item_type,item_level+1)) NewVillage = RessVillage(newlevels, self.max_levels, self.production + production, self.buildtime + time, self.cost + cost, build_sequence ) NewVillage.build() def build(self): global max_prod, fortschritt, max_fortschritt, configs self.levels.sort(reverse=False) # If we had the very same configuration already, but with a higher overall production, # then that was the better way to reach that setup. We need not proceed then here anymore # Otherwise: we found a possibly better way to reach the setup and we use this henceforth # as the better solution. str_levels = str(self.levels) if str_levels not in configs: configs[str_levels] = self.production else: if configs[str_levels].sum() >= self.production.sum(): return else: configs[str_levels] = self.production # For identical buildings (type AND level) we only need to test building one instead of each old_items = [] num_max = 0 for index, item in enumerate(self.levels): # No need to change the same thing twice if item in old_items: continue level = item[1] itemtype = item[0] #print(self.max_levels[itemtype]) # Don't try to increase the level of a building already at max level if self.max_levels[itemtype] <= level: num_max += 1 continue old_items.append(item) self.build_item(index) if num_max == len(self.levels): fortschritt += 1 #if fortschritt == 1: #print("Bau-Reihenfolge: ",self.build_sequence) #print("Produktion: ",self.get_total_production()) #exit() if self.production.sum() > max_prod.sum(): max_prod = self.production print("Test %i / %i:" % (fortschritt, max_fortschritt)) print("".join('{0:s}: {1:5d}; '.format(Felder[k],int(self.production[k])) for k in range(len(self.production)))) #,self.production) print(self.build_sequence) print("\n") # initialize with worst case values field_levels = [1,1,1,1,1,1] MyList = [] for item in field_levels: MyList.append(('korn', item)) MyList.append(('muehle', 0)) MyList.append(('baeckerei', 0)) left_levels = np.zeros((len(MyList),)) for n,item in enumerate(MyList): max_level = MaxDict[item[0]] left_levels[n] = max_level - item[1] max_fortschritt = left_levels.prod() Village = RessVillage(MyList, MaxDict, 0, 0, np.zeros((4,)), []) Village.build()
Mark as private
for 30 minutes
for 6 hours
for 1 day
for 1 week
for 1 month
for 1 year
forever