Loading
#openttdcoop - Paste
Archives
Trending
Docs
Login
ABAP
ActionScript
ActionScript 3
Ada
AIMMS3
ALGOL 68
Apache configuration
AppleScript
Apt sources
ARM ASSEMBLER
ASM
ASP
asymptote
Autoconf
Autohotkey
AutoIt
AviSynth
awk
BASCOM AVR
Bash
Basic4GL
BibTeX
BlitzBasic
bnf
Boo
Brainfuck
C
C#
C (LoadRunner)
C (Mac)
C (WinAPI)
C++
C++ (Qt)
C++ (WinAPI)
CAD DCL
CAD Lisp
CFDG
ChaiScript
Chapel
CIL
Clojure
CMake
COBOL
CoffeeScript
ColdFusion
CSS
Cuesheet
D
Dart
DCL
DCPU-16 Assembly
DCS
Delphi
Diff
DIV
DOS
dot
E
ECMAScript
Eiffel
eMail (mbox)
EPC
Erlang
Euphoria
EZT
F#
Falcon
FO (abas-ERP)
Formula One
Fortran
FreeBasic
FreeSWITCH
GADV 4CS
GAMBAS
GDB
genero
Genie
glSlang
GML
GNU/Octave
GNU Gettext
GNU make
Gnuplot
Go
Groovy
GwBasic
Haskell
Haxe
HicEst
HQ9+
HTML
HTML5
Icon
INI
Inno
INTERCAL
Io
ISPF Panel
J
Java
Java(TM) 2 Platform Standard Edition 5.0
Javascript
JCL
jQuery
KiXtart
KLone C
KLone C++
LaTeX
LDIF
Liberty BASIC
Lisp
LLVM Intermediate Representation
Locomotive Basic
Logtalk
LOLcode
Lotus Notes @Formulas
LotusScript
LScript
LSL2
Lua
MagikSF
MapBasic
Matlab M
Microchip Assembler
Microsoft Registry
mIRC Scripting
MMIX
Modula-2
Modula-3
MOS 6502 (6510) ACME Cross Assembler format
MOS 6502 (6510) Kick Assembler format
MOS 6502 (6510) TASM/64TASS 1.46 Assembler format
Motorola 68000 - HiSoft Devpac ST 2 Assembler format
Motorola 68000 Assembler
MXML
MySQL
Nagios
NetRexx
newlisp
nginx
Nimrod
NML NewGRF Meta Language
NSIS
Oberon-2
Objeck Programming Language
Objective-C
OCaml
OCaml (brief)
ooRexx
OpenBSD Packet Filter
OpenOffice.org Basic
Oracle 8 SQL
Oracle 11 SQL
Oxygene
OZ
ParaSail
PARI/GP
Pascal
PCRE
per
Perl
Perl 6
PHP
PHP (brief)
PIC16
Pike
Pixel Bender 1.0
PL/I
PL/SQL
PostgreSQL
PostScript
POVRAY
PowerBuilder
PowerShell
ProFTPd configuration
Progress
Prolog
PROPERTIES
ProvideX
Puppet
PureBasic
Python
Python for S60
q/kdb+
QBasic/QuickBASIC
QML
R / S+
Racket
Rails
RBScript
REBOL
rexx
robots.txt
RPM Specification File
Ruby
Rust
SAS
Scala
Scheme
SciLab
SCL
sdlBasic
Smalltalk
Smarty
SPARK
SPARQL
SQL
Squirrel Script
Squirrel Script with OpenTTD AI/GS
StandardML
StoneScript
SystemVerilog
T-SQL
TCL
Tera Term Macro
Text
thinBasic
TypoScript
Unicon (Unified Extended Dialect of Icon)
Uno Idl
Unreal Script
UPC
Urbi
Vala
vb.net
VBScript
Vedit macro language
Verilog
VHDL
Vim Script
Visual Basic
Visual Fox Pro
Visual Prolog
Whitespace
Whois (RPSL format)
Winbatch
X++
XBasic
XML
Xorg configuration
YAML
ZiLOG Z80 Assembler
ZXBasic
import math import time import datetime import os from os import remove from PIL import Image from multiprocessing import Pool import multiprocessing from copy import deepcopy import argparse # print functions for control from debug_level parameter def print_start(bool, string): if bool == True: print(str(string)) def print_lvl_0(debug_level, string): print(str(string)) def print_lvl_1(debug_level, string): if debug_level > 0: print(str(string)) def print_lvl_2(debug_level, string): if debug_level > 1: print(str(string)) def print_lvl_3(debug_level, string): if debug_level > 2: print(str(string)) def print_lvl_4(debug_level, string): if debug_level > 3: print(str(string)) def print_lvl_5(debug_level, string): if debug_level > 4: print(str(string)) def print_lvl_6(debug_level, string): if debug_level > 5: print(str(string)) def print_lvl_7(debug_level, string): if debug_level > 6: print(str(string)) # centralized way to turn off messages at the start of the script show_starting_messages = False # starting message print_start(show_starting_messages, '-'*79) print_start(show_starting_messages, 'Starting...') # path definition diskPath = ''# only fill if you want it to work in some absolute path inputFolder = diskPath + 'input/' outputFolder = diskPath + 'output/' tempFolder = outputFolder + 'temp/'#don't change this # make sure the output folders exist os.makedirs(outputFolder, exist_ok = True) os.makedirs(tempFolder, exist_ok = True) # printing path just to check print_start(show_starting_messages, 'inputFolder is ' + inputFolder) print_start(show_starting_messages, 'outputFolder is ' + outputFolder) # starting timer tt = time.time() # format the time. I forgot how this works but it does. startedTime = datetime.datetime.fromtimestamp(tt).strftime('%H:%M:%S') # open palette images # ----------------------------------------------------------------------------------------------------------------- # image for palette data palette_img_indexed = Image.open(inputFolder + 'palette_key.png') palette_data = deepcopy(palette_img_indexed.palette) print_start(show_starting_messages, 'Opening and loading palette: ' + 'openttd-palette-dos-RGBA.png') # image for colour comparing palette_img = Image.open(inputFolder + 'openttd-palette-dos-RGBA.png') # creating palette list of RGB pixels p=[] for b in range(0,palette_img.height): for a in range(0, palette_img.width): p.append(palette_img.getpixel((a,b))) print_start(show_starting_messages, 'Palette loaded.') # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- # D E F I N I N G O F F U N C T I O N S # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- def rgb2palette(args): # extract the arguments from the big args list thread_id = args[0] input_image = args[1] x_start = args[2] x_end = args[3] allowed_colour_types = args[4] disallowed_colour_types = args[5] allowed_colour_indexes = args[6] disallowed_colour_indexes = args[7] alpha_ignore = args[8] alpha_offset_2 = args[9] alpha_offset_1 = args[10] red_weight = args[11] green_weight = args[12] blue_weight = args[13] arg_colour_shift = args[14] arg_debug_level = args[15] offset_list = args[16] arg_individual_temp = args[17] print('individual_temp - rgb2palette = ' + str(arg_individual_temp)) print_lvl_5(arg_debug_level, 'rgb2palette args: ' + str(args)) # create allowed colours list colours_to_filter = [] for coltype in allowed_colour_types: if coltype == 'ALL': for n in range(1, 80): colours_to_filter.append(n) for n in range(88, 197): colours_to_filter.append(n) for n in range(205, 215): colours_to_filter.append(n) if coltype == 'GRAYSCALE': for n in range(1, 16): colours_to_filter.append(n) if coltype == 'METAL': for n in range(16, 24): colours_to_filter.append(n) if coltype == 'LIME_GREEN': for n in range(24, 32): colours_to_filter.append(n) if coltype == 'BEIGE': for n in range(32, 40): colours_to_filter.append(n) if coltype == 'DARK_PINK': for n in range(40, 48): colours_to_filter.append(n) if coltype == 'YELLOW': for n in range(50, 53): colours_to_filter.append(n) if coltype == 'DARK_BEIGE': for n in range(53, 60): colours_to_filter.append(n) if coltype == 'YELLOW': for n in range(60, 70): colours_to_filter.append(n) if coltype == 'BROWN_1': for n in range(70, 80): colours_to_filter.append(n) if coltype == 'CC2': for n in range(80, 88): colours_to_filter.append(n) if coltype == 'DARK_GREEN': for n in range(88, 96): colours_to_filter.append(n) if coltype == 'PALE_GREEN': for n in range(96, 104): colours_to_filter.append(n) if coltype == 'BROWN_2': for n in range(104, 112): colours_to_filter.append(n) if coltype == 'BROWN_3': for n in range(112, 122): colours_to_filter.append(n) if coltype == 'BROWN_4': for n in range(122, 128): colours_to_filter.append(n) if coltype == 'MAUVE': for n in range(128, 136): colours_to_filter.append(n) if coltype == 'PURPLE': for n in range(136, 144): colours_to_filter.append(n) if coltype == 'BLUE': for n in range(144, 154): colours_to_filter.append(n) if coltype == 'LIGHT_BLUE': for n in range(154, 162): colours_to_filter.append(n) if coltype == 'PINK': for n in range(162, 170): colours_to_filter.append(n) if coltype == 'LIGHT_PURPLE': for n in range(170, 178): colours_to_filter.append(n) if coltype == 'RED_1': for n in range(178, 185): colours_to_filter.append(n) if coltype == 'RED_2': for n in range(185, 192): colours_to_filter.append(n) if coltype == 'ORANGE': for n in range(192, 198): colours_to_filter.append(n) if coltype == 'CC1': for n in range(198, 206): colours_to_filter.append(n) if coltype == 'GREEN': for n in range(206, 210): colours_to_filter.append(n) if coltype =='CYAN': for n in range(210, 215): colours_to_filter.append(n) if coltype == 'COLA': for n in range(227, 232): colours_to_filter.append(n) if coltype == 'FIRE': for n in range(232, 239): colours_to_filter.append(n) if coltype == 'LED_RED': for n in range(239, 241): colours_to_filter.append(n) if coltype == 'LED_YELLOW': for n in range(241, 245): colours_to_filter.append(n) if coltype == 'WATER': for n in range(245, 255): colours_to_filter.append(n) if coltype == 'WHITE': for n in range(255, 256): colours_to_filter.append(n) # create disallowed colours list disallowed_colours = [] for coltype in disallowed_colour_types: if coltype == 'ALL': for n in range(1, 80): disallowed_colours.append(n) for n in range(88, 197): disallowed_colours.append(n) for n in range(205, 215): disallowed_colours.append(n) if coltype == 'GRAYSCALE': for n in range(1, 16): disallowed_colours.append(n) if coltype == 'METAL': for n in range(16, 24): disallowed_colours.append(n) if coltype == 'LIME_GREEN': for n in range(24, 32): disallowed_colours.append(n) if coltype == 'BEIGE': for n in range(32, 40): disallowed_colours.append(n) if coltype == 'DARK_PINK': for n in range(40, 48): disallowed_colours.append(n) if coltype == 'YELLOW': for n in range(50, 53): disallowed_colours.append(n) if coltype == 'DARK_BEIGE': for n in range(53, 60): disallowed_colours.append(n) if coltype == 'YELLOW': for n in range(60, 70): disallowed_colours.append(n) if coltype == 'BROWN_1': for n in range(70, 80): disallowed_colours.append(n) if coltype == 'CC2': for n in range(80, 88): disallowed_colours.append(n) if coltype == 'DARK_GREEN': for n in range(88, 96): disallowed_colours.append(n) if coltype == 'PALE_GREEN': for n in range(96, 104): disallowed_colours.append(n) if coltype == 'BROWN_2': for n in range(104, 112): disallowed_colours.append(n) if coltype == 'BROWN_3': for n in range(112, 122): disallowed_colours.append(n) if coltype == 'BROWN_4': for n in range(122, 128): disallowed_colours.append(n) if coltype == 'MAUVE': for n in range(128, 136): disallowed_colours.append(n) if coltype == 'PURPLE': for n in range(136, 144): disallowed_colours.append(n) if coltype == 'BLUE': for n in range(144, 154): disallowed_colours.append(n) if coltype == 'LIGHT_BLUE': for n in range(154, 162): disallowed_colours.append(n) if coltype == 'PINK': for n in range(162, 170): disallowed_colours.append(n) if coltype == 'LIGHT_PURPLE': for n in range(170, 178): disallowed_colours.append(n) if coltype == 'RED_1': for n in range(178, 185): disallowed_colours.append(n) if coltype == 'RED_2': for n in range(185, 192): disallowed_colours.append(n) if coltype == 'ORANGE': for n in range(192, 198): disallowed_colours.append(n) if coltype == 'CC1': for n in range(198, 206): disallowed_colours.append(n) if coltype == 'GREEN': for n in range(206, 210): disallowed_colours.append(n) if coltype =='CYAN': for n in range(210, 215): disallowed_colours.append(n) if coltype == 'COLA': for n in range(227, 232): disallowed_colours.append(n) if coltype == 'FIRE': for n in range(232, 239): disallowed_colours.append(n) if coltype == 'LED_RED': for n in range(239, 241): disallowed_colours.append(n) if coltype == 'LED_YELLOW': for n in range(241, 245): disallowed_colours.append(n) if coltype == 'WATER': for n in range(245, 255): disallowed_colours.append(n) if coltype == 'WHITE': for n in range(255, 256): disallowed_colours.append(n) # add individual disallowed colours for n in disallowed_colour_indexes: disallowed_colours.append(n) # move non-disallowed colours to a new list filtered_colours_to_filter = [] for c in colours_to_filter: skip = 0 for d in disallowed_colours: if c == d: skip = 1 if skip == 0: filtered_colours_to_filter.append(c) # add individual allowed colours for n in allowed_colour_indexes: filtered_colours_to_filter.append(n) print_lvl_4(arg_debug_level, 'Colours to filter: ' + str(filtered_colours_to_filter)) # open input image i = Image.open(inputFolder + input_image + '.png') print_lvl_2(arg_debug_level, 'Thread ' + str(thread_id) + ' Opening: ' + input_image + '.png') # create new empty indexed image for output imageOutput = Image.new('L', (i.width,i.height), color = 0) # go through the input image - y axis for y in range (0, i.height): # timestamp for debug ts = time.time() timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S') if y%32 == 0: print_lvl_5(arg_debug_level, 'Thread ' + str(thread_id) + ' ' + timeStamp + ' - ' + input_image + ' row {}'.format(y)) # go through the input image - x axis, limited by threaded strips for x in range (x_start, x_end): # defining winner variables just so they exist winnerDistance = 100000000 winnerID = 0 # loading pixel from image and separating RGBA pixelNumber = x + (y * i.width) pix = i.getpixel((x,y)) pixRed = pix[0] pixGreen = pix[1] pixBlue = pix[2] pixAlpha = pix[3] # check Alpha in pixel, and output alpha/color offset if pixAlpha < alpha_ignore: finalAlpha = 0 colorOffset = 0 if pixAlpha >= alpha_ignore and pixAlpha < 178: finalAlpha = 255 colorOffset = 2 if pixAlpha >= alpha_offset_1 and pixAlpha < alpha_offset_2: finalAlpha = 255 colorOffset = 1 if pixAlpha >= alpha_offset_2: finalAlpha = 255 colorOffset = 0 # if alpha above 50%, do colour comparing to palette if pixAlpha >= alpha_ignore: # go through all of the specified colours to filter for colour_id in filtered_colours_to_filter: rgb1 = p[colour_id] r1 = rgb1[0] g1 = rgb1[1] b1 = rgb1[2] l1 = (r1*red_weight + g1*green_weight + b1*blue_weight) / 255000 l2 = (pixRed*red_weight + pixGreen*green_weight + pixBlue*blue_weight) / 255000 dL = l1-l2 dR = (r1-pixRed)/255 dG = (g1-pixGreen)/255 dB = (b1-pixBlue)/255 distance = (dR*dR*red_weight*0.001 + dG*dG*blue_weight*0.001 + dB*dB*blue_weight*0.001)*0.75 + dL*dL # if it's better match than the previous tries, save it as the new winner if distance < winnerDistance: winnerDistance = distance winnerID = colour_id # final color changed by colorOffset finalID = offset_list[winnerID][colorOffset] #winnerID - colorOffset # finalAlpha taken from the if output above palette colour comparing # making sure that disallowed colours don't appear even by color offset. # if the disallowed colour appears with color offset = 2, try with color offset = 1. # if the problem persists, remove color offset if colorOffset == 2: for g in disallowed_colours: if g == finalID: colorOffset = 1 finalID = offset_list[winnerID][colorOffset] if colorOffset == 1: for g in disallowed_colours: if g == finalID: colorOffset = 0 finalID = offset_list[winnerID][colorOffset] # argument to ignore colorOffset if arg_colour_shift == False: finalID = winnerID # put the final pixel into the output picture imageOutput.putpixel((x,y),(finalID)) # crop the output image based on the threaded strip values # because indexed images don't have alpha, this makes it easier to combine them later cropped_imageOutput = imageOutput.crop((x_start, 0,x_end,i.height)) # put the palette data into the output cropped_imageOutput.putpalette(palette_data) # save the output image to temp folder (with individual parameter or without) if arg_individual_temp == True: cropped_imageOutput.save(outputFolder + 'temp/' + str(input_image) + '_' + str(thread_id) + '_8bpp.png') elif arg_individual_temp == False: cropped_imageOutput.save(outputFolder + 'temp/' + 'temp' + '_' + str(thread_id) + '_8bpp.png') # close the images # we won't need i anymore, and output will need to be loaded again later i.close() cropped_imageOutput.close() # function for combining the outputs of different threads def combineResults(args, thread_count, palette_data, arg_debug_level, arg_individual_temp, arg_auto_clean_temp): print('individual_temp = ' + str(arg_individual_temp)) # extract arguments from the big args list thread_id = args[0] combine_input_image = args[1] x_start = args[2] x_end = args[3] # print arguments for debug print_lvl_5(arg_debug_level, 'combineResults args: ' + str(args)) # get the final output resolution based on input image image_for_resolution = Image.open(inputFolder + str(combine_input_image[1]) + '.png') # create new empty input image with indexed colour final_image = Image.new('L', (image_for_resolution.width, image_for_resolution.height), color = 0) # put palette in the final output image final_image.putpalette(palette_data) # print the height of the output print_lvl_3(arg_debug_level, 'img_resolution.height = ' + str(image_for_resolution.height)) # args is a list of commands for the combiner for combine_order in args: # take the image we want to paste into the final output image if arg_individual_temp == True: image_to_paste = Image.open(outputFolder + 'temp/' + str(combine_order[1]) + '_' + str(combine_order[0]) + '_8bpp.png') elif arg_individual_temp == False: image_to_paste = Image.open(outputFolder + 'temp/' + 'temp' + '_' + str(combine_order[0]) + '_8bpp.png') # print which strip we are pasting print_lvl_3(arg_debug_level, 'Combine strip with x_start = ' + str(combine_order[2])) # paste the strip into the correct position of x_start final_image.paste(image_to_paste, box = (combine_order[2], 0)) # put the palette data in there again just to make sure (not sure which one is necessary, it works now) final_image.putpalette(palette_data) # save the final output image final_image.save(outputFolder + str(combine_input_image[1]) + '_8bpp.png') # optionally remove the temp files if arg_auto_clean_temp == True: for combine_order in args: if arg_individual_temp == True: os.remove(outputFolder + 'temp/' + str(combine_order[1]) + '_' + str(combine_order[0]) + '_8bpp.png') elif arg_individual_temp == False: os.remove(outputFolder + 'temp/' + 'temp' + '_' + str(combine_order[0]) + '_8bpp.png') # function for easy debug of constructing the long and rather unreadable offset list def check_list_count(arg_debug_level, list_to_check, n): #define some variable w = 0 for stuff in list_to_check: # add +1 to w for every item in the list w += 1 # print amount of items in the list(w), and n for easy comparison. They should be equal. print_lvl_5(arg_debug_level, 'Offset list item count: ' + str(w) + ' , last n is: ' + str(n)) # function to append only sub-lists instead of appending the whole list def append_offset_list(offset_list, temp_list): for t in temp_list: offset_list.append(t) # function to make a template for 6-index colours for index offset list def add_6_index_list(offset_list, n): temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+3],#3-- [ n+3, n+3, n+2],#4-- [ n+4, n+3, n+2],#5 [ n+5, n+4, n+3]# 6 ] append_offset_list(offset_list,temp_list) # function to make a template for 8-index colours for index offset list def add_8_index_list(offset_list, n): temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+4],#3 [ n+3, n+4, n+4],#4-- [ n+4, n+4, n+3],#5-- [ n+5, n+4, n+3],#6 [ n+6, n+5, n+4],#7 [ n+7, n+6, n+5]# 8 ] append_offset_list(offset_list,temp_list) # function to make a template for 10-index colours for index offset list def add_10_index_list(offset_list, n): temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+4],#3 [ n+3, n+4, n+5],#4 [ n+4, n+5, n+5],#5-- [ n+5, n+5, n+4],#6-- [ n+6, n+5, n+4],#7 [ n+7, n+6, n+5],#8 [ n+8, n+7, n+6],#9 [ n+9, n+8, n+7]#10 ] append_offset_list(offset_list,temp_list) def run(): # define thread count thread_count = options['thread_count'] # define what should the queue for rgb2palette include job_list = [ [ options['input_name'], options['allowed_colour_types'],#allowed colour types (string list) options['disallowed_colour_types'],#disallowed colour types (string list) options['allowed_colour_indexes'],#allowed colour indexes (number list) options['disallowed_colour_indexes'],#disallowed colour indexes (number list) options['alpha_ignore'], options['alpha_offset_2'], options['alpha_offset_1'], options['red_weight'],#red weight (number, default = 1) options['green_weight'],#green weight (number, default = 1) options['blue_weight'],#blue weight (number, default = 1) options['colour_shift'], options['debug_level'], options['individual_temp'] ] ] # job_list-related stuff to be continued later down after creating offset list... #-------------------------------------------------------------------------------- #creating offset list ----------------------------------------------------------- #-------------------------------------------------------------------------------- offset_list = [] #TRANSPARENCY BLUE n = 0 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [n,n,n] ] append_offset_list(offset_list,temp_list) #GRAYSCALE n = 1 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+4],#3 [ n+3, n+4, n+5],#4 [ n+4, n+5, n+6],#5 [ n+5, n+6, n+7],#6 [ n+6, n+7, n+7],#7-- [ n+7, n+8, n+8],#8-- [ n+8, n+8, n+7],#9-- [ n+9, n+8, n+7],#10 [n+10, n+9, n+8],#11 [n+11, n+10, n+9],#12 [n+12, n+11, n+10],#13 [n+13, n+12, n+11],#14 [n+14, n+13, n+12],#15 ] append_offset_list(offset_list, temp_list) #METAL n = 16 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #LIME_GREEN n = 24 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #BEIGE n = 32 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #DARK_PINK n = 40 check_list_count(options['debug_level'], offset_list, n) add_10_index_list(offset_list, n) #YELLOW n = 50 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, 189, 188],#1 [ n+1, n+0, 188],#2 [ n+2, n+1, n+0]# 3 ] append_offset_list(offset_list, temp_list) #DARK_BEIGE n = 53 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+3],#3-- [ n+3, n+3, n+4],#4-- [ n+4, n+3, n+3],#5-- [ n+5, n+4, n+3],#6 [ n+6, n+5, n+4]# 7 ] append_offset_list(offset_list, temp_list) #YELLOW n = 60 check_list_count(options['debug_level'], offset_list, n) add_10_index_list(offset_list, n) #BROWN_1 n = 70 check_list_count(options['debug_level'], offset_list, n) add_10_index_list(offset_list, n) #CC2, n = 80 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #DARK_GREEN n = 88 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #PALE_GREEN n = 96 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #BROWN_2 n = 104 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #BROWN_3 n = 112 check_list_count(options['debug_level'], offset_list, n) add_10_index_list(offset_list, n) #BROWN_4 n = 122 check_list_count(options['debug_level'], offset_list, n) add_6_index_list(offset_list, n) #MAUVE n = 128 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #PURPLE n = 136 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #BLUE n = 144 check_list_count(options['debug_level'], offset_list, n) add_10_index_list(offset_list, n) #LIGHT_BLUE n = 154 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #PINK n = 162 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #LIGHT_PURPLE n = 170 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #RED n = 178 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, n+1, n+2],#1 [ n+1, n+2, n+3],#2 [ n+2, n+3, n+4],#3 [ n+3, n+4, n+5],#4 [ n+4, n+5, n+6],#5 [ n+5, n+6, n+7],#6 [ n+6, n+7, n+7],#7-- [ n+7, n+6, n+6],#8-- [ n+8, n+7, n+6],#9 [ n+9, n+8, n+7],#10 [n+10, n+9, n+8],#11 [n+11, n+10, n+9],#12 [n+12, n+11, n+10],#13 [n+13, n+12, n+11]#14 ] append_offset_list(offset_list, temp_list) #ORANGE n = 192 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, 64, 63],#1 [ n+1, n+0, 64],#2 [ n+2, n+1, n+0],#3 [ n+3, n+2, n+1],#4 [ n+4, n+3, n+2],#5 [ n+5, n+4, n+3]#6 ] append_offset_list(offset_list, temp_list) #CC1 n = 198 check_list_count(options['debug_level'], offset_list, n) add_8_index_list(offset_list, n) #GREEN n = 206 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, 93, 92],#1 [ n+1, n+0, 93],#2 [ n+2, n+1, n+0],#3 [ n+3, n+2, n+1]# 4 ] append_offset_list(offset_list, temp_list) #CYAN n = 210 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n, n+1, n+2],#1 [n+1, n+2, n+2],#2 [n+2, n+3, n+3],#3 [n+3, n+2, n+2],#4 [n+4, n+3, n+2]# 5 ] append_offset_list(offset_list, temp_list) #ALPHAPINK & ACT n = 215 check_list_count(options['debug_level'], offset_list, n) temp_list = [ [ n+0, n+0, n+0],#1 - index 215 [ n+1, n+1, n+1],#2 - index 216 [ n+2, n+2, n+2],#3 - index 217 [ n+3, n+3, n+3],#4 - index 218 [ n+4, n+4, n+4],#5 - index 219 [ n+5, n+5, n+5],#6 - index 220 [ n+6, n+6, n+6],#7 - index 221 [ n+7, n+7, n+7],#8 - index 222 [ n+8, n+8, n+8],#9 - index 223 [ n+9, n+9, n+9],#10 - index 224 [ n+10, n+10, n+10],#11 - index 225 [ n+11, n+11, n+11],#12 - index 226 [ n+12, n+12, n+12],#13 - index 227 [ n+13, n+13, n+13],#14 - index 228 [ n+14, n+14, n+14],#15 - index 229 [ n+15, n+15, n+15],#16 - index 230 [ n+16, n+16, n+16],#17 - index 231 [ n+17, n+17, n+17],#18 - index 232 [ n+18, n+18, n+18],#19 - index 233 [ n+19, n+19, n+19],#20 - index 234 [ n+20, n+20, n+20],#21 - index 235 [ n+21, n+21, n+21],#22 - index 236 [ n+22, n+22, n+22],#23 - index 237 [ n+23, n+23, n+23],#24 - index 238 [ n+24, n+24, n+24],#25 - index 239 [ n+25, n+25, n+25],#26 - index 240 [ n+26, n+26, n+26],#27 - index 241 [ n+27, n+27, n+27],#28 - index 242 [ n+28, n+28, n+28],#29 - index 243 [ n+29, n+29, n+29],#30 - index 244 [ n+30, n+30, n+30],#31 - index 245 [ n+31, n+31, n+31],#32 - index 246 [ n+32, n+32, n+32],#33 - index 247 [ n+33, n+33, n+33],#34 - index 248 [ n+34, n+34, n+34],#35 - index 249 [ n+35, n+35, n+35],#36 - index 250 [ n+36, n+36, n+36],#37 - index 251 [ n+37, n+37, n+37],#38 - index 252 [ n+38, n+38, n+38],#39 - index 253 [ n+39, n+39, n+39],#40 - index 254 [ n+40, n+40, n+40] #41 - index 255 ] append_offset_list(offset_list, temp_list) # final check n = 256 check_list_count(options['debug_level'], offset_list, n) # continuation of job_list-related stuff from before creating offset list... for job in job_list: # defining lists just so they exist all_jobs = [] job_chunks = [] queue = [] # variable for adding a pixel to some threads in case full image result can't be divided by thread count extra = 0 # open image chunk_image = Image.open(inputFolder + job[0] + '.png') # get their average size, rounded down chunk_average_size = math.floor(chunk_image.width/thread_count) # get the remaining pixel columns after rounded down division chunk_modulo_size = chunk_image.width % thread_count # get x-axis starts and ends of strips for thread in range(0, thread_count): start = chunk_average_size * thread end = (chunk_average_size * (thread+1)) # add extra pixels in case full image width can't be divided by thread count start += extra if thread < chunk_modulo_size: extra += 1 end += extra # define a list to append into a big chunk of jobs for 1 task # (not utilized anymore but can be if parameters are overridden # and everything is launched from python with changing the options from here) job_chunk_list = [ thread, #0 - threadID job[0], #1 - input_name start, #2 - x_start end, #3 - x_end job[1], #4 - allowed_colour_types job[2], #5 - disallowed_colour_types job[3], #6 - allowed_colour_indexes job[4], #7 - disallowed_colour_indexes job[5], #8 - alpha_ignore job[6], #9 - alpha_offset_1 job[7], #10- alpha_offset_2 job[8], #11- red_weight job[9], #12- green_weight job[10],#13- blue_weight job[11],#14- colour_shift job[12],#15- debug_level offset_list,#16 options['individual_temp']#17 ] # append the job chunk list in to job chunks job_chunks.append(job_chunk_list) # append the list of job pieces into queue queue.append( [thread, job[0], start, end, job[1], job[2], job[3], job[4], job[5], job[6], job[7], job[8], job[9], job[10], job[11], job[12], offset_list, options['individual_temp'] ]) # append the job chunks into all jobs all_jobs.append(job_chunks) # go through all jobs and print what they are about to do for a_job in all_jobs: print_lvl_5(options['debug_level'], '-'*32) thread_id = 0 for b_thread in a_job: if thread_id == 0: thread_id += 1 print_lvl_5(options['debug_level'], 'Job: ' + str(b_thread[0])) print_lvl_5(options['debug_level'], ' '*10 + 'Start, ' + 'End') print_lvl_5(options['debug_level'], 'Thread ' + str(thread_id) + ': ' + str(b_thread[1]) + ', ' + str(b_thread[2]))# # print the whole queue (debug level 7, this thing is LONG) print_lvl_7(options['debug_level'], (queue)) # ---------------------------------------------------------------------------------------------------------------- # M U L T I T H R E A D E D P R O C E S S S T A R T # ---------------------------------------------------------------------------------------------------------------- # pool used on rgb2palette pool = multiprocessing.Pool(processes = thread_count) pool.map(rgb2palette, queue) pool.close() pool.join() # ---------------------------------------------------------------------------------------------------------------- # M U L T I T H R E A D E D P R O C E S S E N D # ---------------------------------------------------------------------------------------------------------------- # combine the results of the individual threads combineResults(queue, thread_count, palette_data, options['debug_level'], options['individual_temp'], options['auto_clean_temp']) # finished time for timestamp tx = time.time() # format the time. I forgot how this works but it does. finishedTime = datetime.datetime.fromtimestamp(tx).strftime('%H:%M:%S') # elapsed time for timestamp te = tx - tt # format the elapsed time. I forgot how this works but it does. elapsedTime = str(datetime.timedelta(seconds=int(te))) # print the time it took to do all this mess print('Started: ' + startedTime) print('Finished: ' + finishedTime) print('-'*18) print('Elapsed: ' + elapsedTime) if __name__ == '__main__': # define arguments/parameters parser = argparse.ArgumentParser(description = 'Process some arguments.') parser.add_argument('-t','--thread_count', help='Number of theads to run, Default: 16', type = int, required = False) parser.add_argument('-n','--input_name', help='File to process. Without .png extension. File can only be RGBA (not RGB)', required = True) parser.add_argument('-e','--allowed_colour_types', help='Allowed colour types (list of strings), Default: "ALL"', nargs = '+', required = False) parser.add_argument('-f','--disallowed_colour_types', help='Disallowed colour types (list of strings), Default: nothing', nargs = '+', required = False) parser.add_argument('-i','--allowed_colour_indexes', help='Allowed colour indexes (list of numbers), Default: nothing', nargs = '+', type = int, required = False) parser.add_argument('-y','--disallowed_colour_indexes', help='Disallowed colour indexes (list of numbers), Default: nothing', nargs = '+', type = int, required = False) parser.add_argument('-a','--alpha_ignore', help='Threshold of ignoring transparency. Default: 128', type = int, required = False) parser.add_argument('-o','--alpha_offset_1', help='Threshold of transparency to colour shift by 1 index. Default: 178', type = int, required = False) parser.add_argument('-p','--alpha_offset_2', help='Threshold of transparency to colour shift by 2 indexes. Default: 230', type = int, required = False) parser.add_argument('-r','--red_weight', help='Weight of red input for colour comparing. Default: 1', type = float, required = False) parser.add_argument('-g','--green_weight', help='Weight of green input for colour comparing. Default: 1', type = float, required = False) parser.add_argument('-b','--blue_weight', help='Weight of blue input for colour comparing. Default: 1', type = float, required = False) parser.add_argument('-c','--colour_shift', help='For semi-transparent pixels, shifts index to attempt to compensate alpha. Default: True', type = bool, required = False) parser.add_argument('-d', '--debug_level', help='Amount of info shown in console. Default: 1, Min: 1, Max: 7', type = int, required = False) parser.add_argument('-z', '--individual_temp', help='Filenames in temp folder are unique for each input filename, to allow running on multiple inputs at the same time. (Temp folder can get larger)', type = bool, required = False) parser.add_argument('-x', '--auto_clean_temp', help='Automatically remove temp files after results are combined.', type = bool, required = False) options = vars(parser.parse_args()) # defaults for parameters default_values = [ ('thread_count', 16), ('allowed_colour_types', ['ALL']), ('disallowed_colour_types', []), ('allowed_colour_indexes', []), ('disallowed_colour_indexes', []), ('alpha_ignore', 128), ('alpha_offset_1', 178), ('alpha_offset_2', 230), ('red_weight', 1), ('green_weight', 1), ('blue_weight', 1), ('colour_shift', False), ('debug_level', 1), ('individual_temp', False), ('auto_clean_temp', False), ] for name, def_value in default_values: if not options[name]: options[name] = def_value run()
Mark as private
for 30 minutes
for 6 hours
for 1 day
for 1 week
for 1 month
for 1 year
forever